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Abstract

Inspired by work of both Widom and Mandelbrot, we analyze the Computstat database com-
prising all publicly traded United States manufacturing companies in the years 1974-1993. We
find that the distribution of company sizes remains stable for the 20 years we study, i.e., the
mean value and standard deviation remain approximately constant. We study the distribution
of sizes of the “new” companies in each year and find it to be well approximated by a log-
normal. We find (i) the distribution of the logarithm of the growth rates, for a fixed growth
period of T years, and for companies with approximately the same size S displays an exponen-
tial “tent-shaped” form rather than the bell-shaped Gaussian, one would expect for a log-normal
distribution, and (ii) the fluctuations in the growth rates — measured by the width of this dis-
tribution o7 — decrease with company size and increase with time 7. We find that for annual
growth rates (7 =1), or ~ S5, and that the exponent § takes the same value, within the error
bars, for several measures of the size of a company. In particular, we obtain f=10.2040.03 for
sales, f#=0.18 £ 0.03 for number of employees, f=0.18 £ 0.03 for assets, § =0.18 £ 0.03 for
cost of goods sold, and f=0.20 & 0.03 for property, plant, and equipment. We propose mod-
els that may lead to some insight into these phenomena. First, we study a model in which the
growth rate of a company is affected by a tendency to retain an “optimal” size. That model leads
to an exponential distribution of the logarithm of growth rate in agreement with the empirical
results. Then, we study a hierarchical tree-like model of a company that enables us to relate 8
to parameters of a company structure. We find that = —InII/Inz, where z defines the mean
branching ratio of the hierarchical tree and IT is the probability that the lower levels follow the
policy of higher levels in the hierarchy. We also study the output distribution of growth rates
of this hierarchical model. We find that the distribution is consistent with the exponential form
found empirically. We also discuss the time dependence of the shape of the distribution of the
growth rates.
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1. Introduction

Ben Widom was the first of a pioneering group of statistical physicists to introduce
concepts of scaling in critical phenomena [1]. At approximately the same time, Benoit
Mandelbrot was analyzing the distribution of the price changes in cotton at different
time scales [2-8]. The Mandelbrot work has inspired many recent studies. In particular
the databases that can be analyzed today involve records not at daily intervals but at
I min (or even quarter minute) intervals [9-27].

Here we discuss not scaling in finance, but rather scaling in economics. Specifically,
inspired by both Widom and Mandelbrot, we extend the analysis of the Computstat
database comprising all publicly tradéd United States manufacturing companies within
the years 1974-1993 with a view toward characterizing the growth rates of manufac-
turing companies [28,31].

There are often two motivations for being interested in a given question, a prac-
tical and a scientific motivation. The same is true for the distribution in growth
rates of companies. A practical motivation is that if you want to invest in a given
company, you may wish to know in advance the probability that this company will
grow by a given amount, so you need to know the histogram of growth rates —
and there is a quite different histogram depending on the size of the firm in
question.

A scientific motivation for the present study is the considerable recent interest in
economics in developing a richer theory of the company [32-50]. In standard micro-
economic theory, a company is viewed as a production function for transforming
inputs such as labor, capital, and materials into output [34,39,45]. When dynam-
ics are incorporated into the model, the source of the link between production in
one period and production in another arises because of investment in durable, phys-
ical capital and because of technological change (which in turn can arise from in-
vestments in research and development). Recent work on company dynamics em-
phasizes the effect of how companies learn over time about their efficiency rela-
tive to competitors [38,51-53]. The production dynamics captured in these models
are not, however, the only source of actual company dynamics. Most notably, the
existing models do not account for the time needed to assemble the organizational
infrastructure needed to support the scale of production that typifies modem
corporations.

2. Background

In 1931, the French economist Gibrat proposed a simple model to explain the empiri-
cally observed size distribution of companies [32]. He made the following assumptions:
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(i) the growth rate R of a company is independent of its size (this assumption is usu-
ally referred to by economists as the law of proportionate effect), (ii) the successive
growth rates of a company are uncorrelated in time, and (iii) the companies do not
interact.

In mathematical form, Gibrat’s model is expressed by the stochastic process:

St+ar =51 + &), (2.1)

where S;. 4, and S; are, respectively, the size of the company at times (¢ + 4¢) and ¢,
and ¢ is an uncorrelated random number with some bounded distribution and variance
much smaller than one (usually assumed to be Gaussian). Hence, log S; follows a simple
random walk and, for sufficiently large time intervals T » A¢, the growth rates

_ Sier

_ 22
Ry s, (2.2)

are log-normally distributed. If we assume that all companies are born at approximately
the same time and have approximately the same initial size, then the distribution of
company sizes is also log-normal.

An advantage of Gibrat’s model is that it yields testable hypotheses. The law of
proportionate effect implies that the mean growth rate and the fluctuations of the growth
rate are independent of size. In fact, however, the fluctuations of the growth rate
measured by the standard deviation ¢(S) decline with an increase in company size. This
was first observed by Singh and Whittington [54] and confirmed by others [28-31,55-
59].The negative relationship between growth fluctuations and size is not surprising
because large companies are likely to be more diversified. Singh and Whittington state
that the decline of the standard deviation with size is not as rapid as if the companies
consisted of independently operating subsidiary divisions. The latter would imply that
the relative standard deviation decays as 6(S)~ S~/ [54]. This confirms the common-
sense view that the performance of different parts of a company are related to each
other.

3. Empirical resuits

We study all the US manufacturing publicly traded companies from 1974 to 1993.
The source of our data is Compustat which is a database on all publicly traded com-
panies in the US. Compustat obtains this information from reports that publicly traded
companies must file with the US Securities and Exchange Commission. The database
contains a large amount of information on each company. Among the items included
are “sales”, “cost of goods sold”, “assets”, “number of employees”, and ‘“‘property,
plant, and equipment”.

Another item provided for each company is the Standard Industrial Classification
(SIC) code. In principle, two companies in the same primary SIC code are in the same

market; that is, they compete with each other. In practice, defining markets is extremely
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difficult [53]. More important for our analysis, virtually all modern companies sell in
more than one market.

The only use we make of the primary SIC codes in Compustat is to restrict our
attention to manufacturing companies. Specifically, we include in our sample all com-
panies with a major SIC code from 2000 to 3999. We do not use the data from the
individual business segments of a company, nor do we divide up the sample according
to SIC codes.

The approach we take in this study is part of a distinguished tradition. First, there is
a large body of work by Simon [40] and various co-authors that explored the stochastic
properties of the dynamics of company growth. Also, in a widely cited article (that
nonetheless has not had much impact on mainstream economic analysis), Lucas sug-
gests that the distribution of company size depends on the distribution of managerial
ability in the economy rather than on the factors that determine size in the conventional
theory of the company [41].

To study the distribution of company sizes and growth rates, one problem that must
be confronted is the definition of company size. If all companies produced the same
good (say, steel), then we could use a physical measure of output, such as tons.
We are, however, studying companies that produce different goods for which there is
no common physical measure of output. An obvious solution to the problem is to use
the dollar value of output: the sales. A general alternative to measuring the size of
output is to measure input. Again, since companies produce different goods, they use
different inputs. However, virtually all companies have employees. As a result, some
economists have used the number of employees as a measure of company size. Three
other possibilities involve the dollar value of inputs, such as the “cost of goods sold”,
“property, plant and equipment”, or “assets”. As we discuss below, we obtain similar
results for all of these measures. We begin by describing the growth rate of sales.
To make the values of sales in different years comparable, we adjust all values to
1987 dollars by the GNP price deflator.

Since the law of proportionate effects implies a multiplicative process for the growth
of companies, it is natural and more convenient to study the logarithm of sales. We thus
define

so=InS, (3.1)

and the corresponding growth rate

S
=R :lnS—I, (3.2)
0

where Sy is the size of a company in a given year and S its size the following year.

3.1. Size distribution of publicly traded companies

Stanley et al., determined the size distribution of publicly traded manufacturing com-
panies in the US [60]. They found that for 1993 the data fit to a good degree of
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Fig. 1. Probability density of the logarithm of the sales for publicly-traded manufacturing companies (with
standard industrial classification index of 2000-3999) in the US for each of the years in the 1974-1993
period. All the values for sales were adjust to 1987 dollars by the GNP price deflator. Also shown (solid
circles) is the average over the 20 years. It is visually apparent that the distribution is approximately stable
over the period.

approximation a log-normal distribution. These results have been recently confirmed
by Hart and Oulton {61] for a sample of approximately 80000 United Kingdom com-
panies. Here, we present a study of the distribution for a period of 20 years (from
1974 to 1993).

Fig. la shows the distribution of company size in each year from 1974 to 1993.
Particularly above the lower tails, the distributions lie virtually on top of each other.
Thus, the distribution is stable over this period. This is a surprising result, when we
compare it with the predictions of the Gibrat model. Eq. (2.1) implies that the distri-
bution of sizes of companies should get broader with time. In fact, the variance of the
distribution should increase linearly in time. Thus, we must conclude that other factors,
not included in Gibrat’s assumptions, must have important roles. Two obvious factors
not captured by the Gibrat assumption are (i) the entry of new companies and (ii) the
“dying” of companies.

3.2. The distribution of annual growth rates

The distribution p(#; | so) of the growth rates from 1974 to 1993 is shown in Fig. 2
for three different values of the initial sales [62]. Remarkably, these curves display
a simple “tent-shaped” form. Hence, the distribution is not Gaussian — as expected
from the Gibrat approach [32] — but rather is exponential [28-30,31]

V2|n _”I(SO)|>

1
p(n |So)—mexp( P (3.3)
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Fig. 2. Probability density p(r)|so) of the growth rate r = In(8/Sy) for all publicly-traded US manufacturing
companies in the 1994 Compustat database with Standard Industrial Classification index of 2000-3999. The
distribution represents all annual growth rates observed in the 19-year period 1974-1993. We show the data
for three different bins of initial sales (with sizes increasing by powers of 8): 87 <S5y <8%, 8% <S5, <8, and
8% < Sy <8'0. The solid lines are exponential fits to the empirical data close to the peak. We can see that
the wings are somewhat “fatter” than what is predicted by an exponential dependence.

The straight lines shown in Fig. 2 are calculated from the average growth rate 7|(sy) and
the standard deviation a,(so) obtained by fitting the data to Eq. (3.3). An implication
of this result is that the distribution of the growth rate has much broader tails than
would be expected for a Gaussian distribution.

3.3. Standard deviation of the growth rate
Next, we study the dependence of o)(so) on so. As is apparent from Fig. 2, the
width of the distribution of growth rates decreases with increasing so. We find that

o1(sg) is well approximated for eight orders of magnitude (from sales of less than 10°
dollars up to sales of more than 10! dollars) by the law [28-30,31]

a1(s0) ~exp(—Pso), 34
where $=0.20 4+ 0.03. Eq. (3.4) implies the scaling law
a1(So)~5, " . (3.5)

Fig. 3 displays o, vs. Sy, and we can see that Eq. (3.5) is indeed verified by the
data.



L. A.N. Amaral et al.| Physica A 244 (1997) 1-24 7

R ———

O Assefs

E o Sales
F < P.P.E. <
I ¢ C.0.G.S.
s N. Employees
o | P | | amd. o T | anaed 4 asand -} aand i soamed 2 g2
10° 10° 10* :Sg" 10° 10" 10"

Fig. 3. Standard deviation of the 1-year growth rates for different definitions of the size of a company as
a function of the initial values. Least-squares power-law fits were made for all quantities leading to the
estimates of f§: 0.18 £ 0.03 for “assets”, 0.20 + 0.03 for “sales”, 0.18 & 0.03 for “number of employees”,
0.18 &+ 0.03 for “cost of goods sold”, and 0.20 & 0.03 for “plant, property & equipment”. The straight lines
are guides to the eye and have slopes 0.19.

Also of interest is the width of the distribution of final sizes S; =Sy expr), that we
designate by Z1(Sp). We can express 2| as

Z1(So) 2 =(S]) — (S1)? (3.6)
which scales as

DSy~ Sy P (3.7)

3.4. The T-year growth rates

Another relevant question is the validity of Eq. (3.3) for larger periods of time, i.c.,
if we consider the T-year growth rate rr, will we get a similar distribution or not?
The analysis of the data shows that the distribution of growth rates for 7' as large as
8 yr does not follow a log-normal distribution.

We find that for 7'<8 the distribution of growth rates approximately follows an
exponential distribution; cf. Fig. 4a. For T =16 the results are not clear due to the
noise.

Finally, we study the dependence of the width of the distribution, for a given value
of sp, on time. Fig. 4b suggests that ar(sg) grows as a logarithm or a small power
of T.
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Fig. 4. (a) Probability density of the T-year growth rate for companies with initial size of 8% <S5, <87, It is
visually apparent that, at least for 7' <8, the distribution is well approximated in its central part by Eq. (3.3).
(b) Plot of the average square width of the distribution 012. as a function of 7 for different values of Sy. It is
clear that o2 increases slower than linearly. This result implies anti-correlations in the successive one-year
growth rates. (c) Plot of the average width of the distribution o7, as a function of Sy for different values

of 7. It is clear that size dependence of 67 becomes weaker for larger values of Sy7.
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For large company sizes the growth of g7 can, to some degree, be approximated by
VT, which is expected for independent successive annual growth rates. However, for
small companies, oy grows more slowly than /T, thus, suggesting that 1yr growth
rates are anticorrelated. Our data also suggest that the exponent f is not universal but
decreases with 7' (see Fig. 4c).

3.5. Discussion

What is remarkable about Egs. (3.3) and (3.5) is that they approximate the growth
rates of a diverse set of companies. They differ not only in their size but also in
what they manufacture. The conventional economic theory of the company is based
on production technology, which varies from product to product. Conventional theory
does not suggest that the processes governing the growth rate of car companies should
be the same as those governing, e.g., pharmaceutical or paper companies. Indeed, our
findings are reminiscent of the concept of universality found in statistical physics, where
different systems can be characterized by the same fundamental laws, independent
of “microscopic” details. Thus, we can pose the question of the universality of our
results: Is the measured value of the exponent § due to some averaging over the
different industries, or is it due to a universal behavior valid across all industries?
As a “robustness check”, we split the entire sample into two distinct intervals of SIC
codes. It is visually apparent in Fig. 5a that the same behavior holds for the different
industries. Thus, we can conclude that our results are indeed universal across different
manufacturing industries in the US.

In statistical physics, scaling phenomena of the sort that we have uncovered in the
sales and employee distribution functions are sometimes represented graphically by
plotting a suitably “scaled” dependent variable as a function of a suitably “scaled”
independent variable. If scaling holds, then the data for a wide range of parameter
values are said to “collapse” upon a single curve. To test the present data for such
data collapse, we plot in Fig. 5b the scaled probability density psa = v'20(s0) p(r1 | 50)
as a function of the scaled growth rates of both sales and employees ry. = V2[r -
F1(80)]l/o(s9). The data collapse upon the single straight line pga = exp(—|rscal| Jshows
small but consistent deviations for large growth rates from the exponential distribution
in Eq. (5). Thus, Eq. (5) can be regarded only as a first-order approximation to reality.
Our results for (i) cost of goods sold, (ii) assets, and (iii) property, plant and equipment
are equally consistent with such scaling. Fig. Sc represents the analogous plot for
growth rates for different time periods 7. It can be seen that the shape of the distribution
remains practically unchanged for larger periods of time 7 > 1. Regardless of the exact
validity of Eqs. (5) and (7), it is remarkable that the shape of the distribution is similar
for all company sizes and does not converge to a Gaussian, even for large T - as the
Gibrat model [Eq. (1)] would predict.

The high degree of similarity in the behavior of sales, the number of employees,
and of the other measures of size that we studied points to the existence of large
correlations among those quantities, as one would expect.
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Fig. 5. (a) Dependence of a1 on Sy for two subsets of the data corresponding to different values of the SIC
codes. In principle, companies in different subsets operate in different markets. The figure suggests that our
results are universal across markets. (b) Scaled probability density peca; = v/201(s0)p(r1]s0) as a function
of the scaled growth rate rg.q = \/f[rl —F1(s0)]/o1(s0). The values were rescaled using the measured values
of Fi(so) and 61(s9). All the data collapse upon the universal curve pg.. = exp(—|recail) as predicted by
Egs. (3.3) and (3.4). (c) Similar scaling plot for the data from Fig. 4(a). Again, we can see that all the
data collapse onto a single curve.
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4. Stochastic modeling

In this section we will present and discuss models that, although very simple, may
give some insight into the empirical results. First, we look into the problem of the
distribution of growth rates. The generally weak assumptions underlying the central
limit theorem suggests that the distribution would be Gaussian. In fact, however, the
data have an exponential distribution not only for r; but also for r;, r4, and rg.

A second puzzle is the striking simplicity of the power-law dependence of o, on Sy.
Such a result is reminiscent of critical phenomena and hints at the possibility of the
economy self-organizing into a critical state [70].

4.1. The exponential distribution of growth rates

The central limit theorem suggests that the distribution of T-year growth rates should
be a Gaussian for T sufficiently large. However, the analysis of the data shows that
Eq. (3.3) is verified for 7<8, while for 7 =16, the noise makes any interpretation
difficult.

Thus, we can ask if there is a plausible modification of Gibrat’s assumptions [32]
that could lead to Eq. (3.3). One possibility is to relax the assumption of uncorrelated
growth rates and to assume that the successive growth rates are correlated in such a
way that the size of a company is “attracted” to an optimal size S*. This value may be
interpreted as the minimum point of a “U-shaped” average cost curve in conventional
economic theory and should evolve only slowly in time (on the scale of years) [63].
Let us then consider a set of companies all having initial sales Sj. As time passes,
the sales of each of the companies will vary from day to day (or over another time
interval much less than 1yr), but they tend to stay in the neighborhood of S*. In the
simplest case, the growth process has a constant “back-drift,” i.e.

Siid _ {kexp(s,), S, <S*,

4.1
St %exp(e,), S, >8*, @D

where & is a constant larger than one and ¢, an uncorrelated Gaussian random number
with zero mean and variance ¢ <1. These dynamics are similar to what is known
in economics as regression towards the mean [64,65], although this formulation is not
standard in economics.

This is a well-known problem [66], and, for large times ¢,  is distributed according
to the equilibrium Boltzmann distribution,

plry ISo)=122k exp (—2-mr~"—r~|) : (4.2)

2
3 O¢

Hence, we recover Eq. (3.3) with 7#(sg) =r™ and

a?
Gl(So)Z\/ilnk. (43)
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The results expressed by Eqs. (4.2) and (4.3) can account for the increase of o, with
the size of the company if we assume that o, is a function of so. A model for such
a dependence will be discussed in Section 4.3.

4.2. Time dependence of the growth-rate distribution

Eq. (4.2) describes the equilibrium distribution of the growth rates for sufficiently
long times ¢. Our data suggest that g, grows with time, even for = 16. One possible
explanation is that we are still in the transient regime of the process in Eq. (4.1).
In order to find the distribution in the transient regime, we must write down the
Fokker—Planck equation [66] associated with this process:

ép 162 O*f Ink of

E—-EZ m“- Tt ESIgn(r-r*) (44)

Using dimensionless variables

Wk
== =t (4.5)
ro to
where
o2 Ata*
= d tg=—" 4.6
"The M " e (*+6)

and imposing a mass-conservation condition

oc 0
1
/p(x)dx:/p(X)dx:i,
0 —o0
we get the solution
1 —(|x | +u)/2u 1 |X| —u —2|x|
p(x,u):\/me ’ : +§erfc —\/2_7 e Ml 4.7)

which always satisfies the boundary condition

al
gnp Y

3
ox x=40

For large u»x, u>1(t>rAt/Ink, t> Atc?/(Ink)?), in agreement with Eq. (4.2), the
distribution can be well approximated by an exponential form:

1 * |y,
p(r|sg)=—e V="l (4.8)
Yo
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(b) Inu

Fig. 6. (a) Solutions of Eq. (4.4), given by Eq. (4.7), for several values of u (from right to left,
u=4,2,1,1/2,1/4,1/8,1/16). (b) The width of the distribution (4.7) ¢ given by Eq. (4.9).

For small u <x the slopes of the graphs of the In p(x,u) can be well approximated by
a linear equation dln p/0x ~ — 1 — x/u, and thus the distributions p(x,u) for large x are
parabolas widening with the increase of u [see Fig. 6a]. The width of the distribution
p(x,u) is given by

+o00

ol = / pOx,u)x? dx

-

_1 u ]. 2 u 1 2 —u/2
=3 erf\/;+ <u+ U ) erfc\/'; \/2714(” +u)e . (4.9)
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For small u<1, o2 increases linearly with time, but for large u, converges to its

limiting value % in agreement with Eq. (4.3) [see Fig. 6b]. In terms of the original
variable ¢, it happens when ¢ >ty = (At6?)/(In k)?. The comparison of our experimental
data with Eqgs. (4.7) and (4.9) suggest that these two equations correctly predict the
qualitative behavior of p(r;,s¢) and o,, but fail to reproduce important quantitative
details of the experimental data.

First, the distribution (4.7) for large x has a rate of decay faster than exponential
while the real data have a rate of decay slower than exponential. Second, the distribution
(4.7) always has a slope of —2 near the peak, while the slopes of the real graphs
apparently decrease with time. Finally, the behavior of ¢; (4.9) has a sharp crossover
at time ¢y from linear growth to constant, while the real data can be approximated as
weak power law for long time spans. This means that for real data the transient time
to is very large.

Another possible explanation for the time-dependence of o7 is that the optimal size
of a company does not remain constant but, in fact, performs some sort of random
walk with a very small diffusion coefficient £. Such a model can be easily solved and
it leads to the prediction that

+o00

11 Y o
p(ST\so):%m / e~ (57502 g lsr=s"a go* (4.10)

— 0o

where a=01(50)/v2 and 2t = 2T. The analytical form of the distribution of growth
rates is then given by

| [ s (t/a - rT) , (t/a—l—rr)]
rrlse)=—e"’“? |e "T?erfc + e erfc , 4.11
p(rr | s0) 72 T VT (4.11)

where erfcx=2/\/n f;oo exp (—y?)dy. The total width of the distribution at time T is

ci=2a"+t=0l +9T. (4.12)

Unfortunately, this result does not agree with the empirical data. Although the width
of the distribution indeed increases with 7', this increase is achieved by a rounding of
the top of the distribution while the slope, on a linear-log plot, of the wings of the
distribution remain constant. This prediction clearly disagrees with the observed change
in the slope of the wings of the distribution for 1 <7 <8.

These discrepancies can possibly be eliminated if one assumes that the noise ¢ in
Eq. (4.1) has long-range correlations (g )~ |t — /| 7. Since the analytical solution
of the problem is rather complicated, we attempted to solve the problem numerically,
assuming for simplicity the Lévy walk [67] type of correlations. We simulate the
multiplicative process described by Eq. (4.1), assuming that companies undergo long
periods of growth with positive ¢, = + ¢, and long periods of recession with negative
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¢ = —e. The durations of these periods £ we assume to be distributed according to
a power-law function

p)~7H, u=y+2. (4.13)

These long winning and losing streaks may represent either the general state of the
economy of some catastrophic changes in company size, e.g., company merging or
splitting, events that do not happen instantaneously, but may, for large corporations,
require a long transitional period of several years. In a logarithmic space, the processes
of Eq. (4.1) correspond to Lévy walks with unequal time steps: large steps directed
toward the origin and small steps directed away from the origin. One can call this
unusual type of motion a Lévy walk in a potential field.

It is well known that classical Lévy walks exhibit superdiffusive behavior when
1 <3 [67]. Our numerical analysis suggests that in this case a Lévy walk in an attractive
potential is not confined to the origin but ¢, diverges as power law

g2 = H (4.14)

This case clearly does not correspond to our experimental data, since 62 grows more
slowly than ¢. On the other hand, when u>3, Lévy walks are confined by the po-
tential but have very large transient times #, which diverge as p—3+¢. In this
case, in the transient regime the distribution of growth rates have a tent-shaped form
near the origin, but with power-law wings. Moreover, in this transient regime
the slope of the tent shape decreases with time, and o2 grows approximately as
small power of ¢, thus, exactly reproducing all three unusual features of our experi-
mental data (see Fig. 7). Hence, Lévy-correlated noise may provide a satisfactory
explanation of our results. However, additional work is needed to examine other
possibilities.

4.3. The scaling exponent

While the model in the previous section explains Eq. (3.3), it does not predict our
finding about the power-law dependence of the standard deviation of growth rates on
company size. In this section, we show how a model of management hierarchies can
predict Eq. (3.5). In economics, it is generally presumed that the growth of compa-
nies is determined by changes in demand and production costs. Since these features
are specific to individual markets, it is surprising that a law as simple as Eq. (3.5)
governs the growth rate of companies operating in much different markets. While de-
mand and technology vary across markets, virtually all companies have a hierarchi-
cal decision structure. One possible explanation for why there is a simple law that
governs the growth rate of all manufacturing companies is that the growth process
is dominated by properties of management hierarchies [49]. This focus on the tech-
nology of management rather then technology of production as a basis for under-
standing company growth is reminiscent of Lucas’ model of the size distribution of
companies [41].



16 L.A.N. Amaral et al. | Physica A 244 (1997} 1-24

T A T

In P(x,t}

(a) X

In o,

4
(b) Int

Fig. 7. (a) Distributions of the Lévy process for p=3.5 for several values of #/100=1,2,4.8, 16,32, 64, 128,
which are simulated as follows. At =0, the walker is located at the origin x =0. For each time step
At =1, the walker performs one step in a positive or negative direction. The number of consecutive steps ¢
performed in the same direction is taken from the power-law distribution p(¢)~ ¢ ~33. The lengths of steps
are equal to 0.9 or —1.1 if the current x coordinate of the walker is positive and 1.1 or —0.9 otherwise.
These unequal steps simulate the eflect of the attractive potential. (b) Behavior of o,z, the width of the
distribution obtained using the Lévy process.

At the outset, let us acknowledge a tension between our empirical results and the
theoretical model in this section. In the preceding sections, we analyze the scaling prop-
erties of the distribution of the logarithmic growth rate »; and its standard deviation 0.
In this section we view companies as consisting of many business units. Since the sales
of a company are the sum of the sales of individual units rather than their product,
it is more convenient to analyze the standard deviation of the annual company size
change rather then the logarithmic growth rate. Let X\(Sp) be the standard deviation of
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end-of-period size for initial size Sy. Since oy ~So? and since S| =5, exp(r;) =~
So + Sor1, it follows that X(Sy) ~ Spa; NSol_p . We note that g, must be small for this
approximation to hold.

Let us start by assuming that every company, regardless of its size, is made up of
similarly sized units. Thus, a company of size Sy is on average made up of N = S/&
units, where

N
I T

P . 4.15
(=5 [E:] 4 (4.15)

and ¢&; is the size of unit i. We further assume that the annual size change J; of each unit
follows a bounded distribution with zero mean and variance 4, which is independent of
So. It is important to notice that throughout this section and the following we consider
4 <§_2, to insure that sizes of units remain positive, Since some divisions after several
cycles of growth may shrink almost to zero, while others grow several times, we assume
that companies dynamically reorganize themselves so that they begin each period with
approximately equal-sized divisions and the inequality 4 < 52 holds.

If the annual size changes of the different units are independent, then the model is
trivial. Using the fact that (J;) =0, we obtain

A
Zf(So)zNA:SOE~SO. (4.16)

Using the fact that Z(SO)NSé —# (see Section 3.4), it follows that ,Bz% [54].

The much smaller value of f§ that we find indicates the presence of strong positive
correlations among a company’s units. We can understand this result by considering
the tree-like hierarchical organization of a typical company [49]. The head of the tree
represents the head of the company, whose policy is passed to the level beneath, and
so on, until finally the units in the lowest level take action. These units have again
a mean size of c: =So/N and annual size changes with zero mean and variance of A.
Here we assume for simplicity that at every level other than the lowest each node is
connected to exactly z units in the next lowest level. Then the number of units N is
equal to z", where n is the number of levels (see Fig. 8).

What are the consequences of this simple model? Let us first assume that the head
of the company suggests a policy that could result in changing the size of each unit
in the lowest level by an amount J. If this policy is propagated through the hierarchy
without any modifications, then it is the same as assuming that all the J;’s are identical.
This implies that

A
Z,Z(SO):NzA:Sg? (4.17)

and we conclude that §=0.
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5,8,8 8 8 88,8,

Fig. 8. The hierarchical-tree model of a company. We represent a company as a branching tree. Here, the
head of the company makes a decision about the change dy in the size of the lowest level units. That
decision is propagated through the tree. However, the decision is only followed with a probability 1. This
is represented in the figure by a full link. With probability (1 — IT) a new growth rate is defined. This is
represented in the figure by a slashed link. We see that at the lowest level there are clusters of values J;
for the changes in size.

Of course, it is not realistic to expect that all decisions in an organization would
be perfectly coordinated as if they were all dictated by a single “boss.” Hierarchies
might be specifically designed to take advantage of information at different levels;
and mid-level managers might even be instructed to deviate from decisions made
at a higher level if they have information that strongly suggests that an alterna-
tive decision would be superior. Another possible explanation for some independence
in decision-making is organizational failure, either due to poor communication or
disobedience.

To model the intermediate case between f=0 and = %, let us assume that the
head of a company makes a decision to change the size of the units of a company by
an amount dyg. We also assume that Jy, for the set of all companies, has zero mean and
variance 4. Furthermore, we consider that each manager at the nodes of the hierarchical
tree follows his supervisor’s policy with a probability I1, while with probability (1—1IT)
imposes a new independent policy. The latter case corresponds to the manager acting
as the head of a smaller company made up of the units under his supervision. Hence,
the size of the company becomes a random variable with a standard deviation that can
be computed either with numerical simulations or using recursion relations among the
levels of the tree.

The proposed model is analogous to the expansion modification models used by Li
to explain long-range correlations in the DNA sequences [68] and allows a simple
analytical solution. In fact, the local production units with numbers ¢ and ¢ + &, where
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k is the larger number, are connected to each other through log, £ levels of company
hierarchy. Thus, the correlations among them are equal to IT2'°%: | since it is required
that log, £ links going up and log, k£ links going down to connect them. Thus, corre-
lations between production units decay as k2"/7/I"z The variance X7 of the total size
of N production units is thus

$2 o N2F2il/Inz NS(I)ZwLZInH/ lnz (4.18)

which implies f=—Inll/Inz. If —InII/Inz>, the units become uncorrelated on
large scales and X* grows as Sp, which implies = 3.

Finally, we can write, for n> 1, that the hierarchical model leads to

(4.19)

1 if M<z'2,

—Infl/lnz if OI>z"'72,
ﬂ:
2

Even for small n, we find that Eq. (4.19) is a good approximation while for z =2 and
IT1=0.87 we predict =020, when we take n=3 the deviation from the predicted
value is only 0.03, i.e., about 15%.

Eq. (4.19) is confirmed in the two limiting cases: when IT =1 (absolute control)
B =0, while for all IT <1/z'/?, decisions at the upper levels of management have no sta-
tistical effect on decisions made at lower levels, and § = % Moreover, for a given value
of f<1 the control level IT will be a decreasing function of z: [1=z"F, cf. Fig. 9.
For example, if we choose the empirical value =~ 0.15, then Eq. (4.19) predicts the
plausible result 0.9 IT >0.7 for a range of z in the interval 2<z<10.

Our data for oy suggest that for larger time intervals § decreases. Can this be
explained within the framework of the hierarchical model? The answer is yes. The
decrease in f with time suggests that the activity of the company becomes more
coordinated on large time scales. It means that the probability IT increases with time.
This is very plausible, since the information may propagate through the hierarchical
structure of the company with finite speed. On small time scales, the activity of the
local manager is less coordinated with the general policy of the company headquarters.
For example, firing and hiring small numbers of employees may be completely the
responsibility of local managers. A major decision, e.g., the firing of a large number
of employees, made at the top of the hierarchy is a relatively infrequent event (on a
time scale of several years), but when it does occur, it is enforced strictly throughout
all levels of the hierarchy.

4.4. Combining the two models

We started with two central empirical findings about company growth rates. The
model in Section 2 predicts one of those findings (the shape of the distribution) and
the model in Section 3 predicts the other (the power-law dependence of the standard
deviation of output on company size). This section addresses the relationship between
the two models. First, we address concerns that the models might be contradictory and
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Fig. 9. Phase diagram of the hierarchical-tree model. To each pair of values of (I1,z) corresponds a value of
B. We plot the iso-curves corresponding to several values of f8. In the shaded area, marked “Uncorrelated”,
the model predicts that f=1/2, i.e., that the units of the company are uncorrelated. Our empirical data
suggests that most companies have values of IT and z in between the curves for f=10.1 and f=0.2.

show that they are not. Then, we show how the models can be combined into a single
model that predicts both of our empirical findings.

In the tree model, company growth rates are potentially the result of many inde-
pendent decisions. As a result, one might expect that the central limit theorem would
imply a Gaussian distribution of company output. In fact, however, the distribution of
outputs is not necessarily Gaussian.

To address the distribution of company output in the tree model, it is necessary
to make an assumption about the distribution from which each independent growth
decision is drawn. No such assumption is needed to analyze the standard deviation of
company growth rates, but is needed to analyze the shape of the distribution [69].

In Fig. 10, we show the distribution of the inputs (i.e., of each independent deci-
sion) and the outputs for a tree with z=2, II =0.87, and n=10. We find that for
Gaussian distributed inputs, the output is not Gaussian in the tails. This finding is re-
markable. First of all, with z=2 and n =10, the company consists of 1024 units. With
a probability to disobey of 1 — 0.87=0.13, one would expect 0.13 x 1024~ 133 of
the units to, on average, make independent decisions about their growth rates. Thus,
even for non-Gaussian inputs, one can hypothesize that the output is close to Gaussian.
Moreover, for Gaussian inputs, the sum of independent Gaussians is itself Gaussian.
Thus, for every particular configuration of the disobeying links, the output distribution
is Gaussian with variance mA, which is a function of this random configuration. How-
ever, there are 2" =2/G=1) possible configurations of links each of which produce a
Gaussian distribution with different integer m.
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Fig. 10. Probability density for the output and input variables in the tree model. Here we have z=2,
I1=087, and n=10. (a) Gaussian distribution of the input. (b) Exponential distribution of the input.

5. Conclusions

In summary, we study publicly traded US manufacturing companies from 1974 to
1993. We find that the distribution of the logarithms of the growth rate decays ex-
ponentially. Furthermore, we observe that the standard deviation of the distribution
of growth rates scales as a power law with the size S of the company, and grows
slowly with time 7. We propose new models that give some insight into these results.
We solve the models both numerically and analytically.
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The models proposed are quite elementary, and show that simple mechanisms may
provide some insight into our findings. Our central results, Egs. (3.3) and (3.5), con-
stitute a test that any accurate theory of the company must pass, and support the
possibility that the scaling laws used to describe complex but inanimate systems com-
prised of many interacting particles (as occurs in many physical systems) may be
usefully extended to describe complex but animate systems comprising of many inter-
acting subsystems (as occurs in economics). Furthermore, the kind of scaling laws
found in this study can be viewed as empirical evidence supporting some hypothesis
regarding the self-organization of the economy [70].
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