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Small-World Networks: Evidencefor a Crossover Picture
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Watts and Strogatz [ Nature (London) 393, 440 (1998)] have recently introduced a model for
disorderednetworksand reportedthat, evenfor very small valuesof the disorder p in the links, the
network behavesasa “small world.” Here,we testthe hypothesighat the appearancef small-world
behavioris not a phasetransitionbut a crossovemphenomenonvhich dependdoth on the network size
n andon the degreeof disorderp. We proposethat the averagedistancef betweenany two vertices
of the networkis a scalingfunctionof n/n*. The crossoversize n* abovewhich the networkbehaves

asa smallworld is shownto scaleasn*(p < 1) ~ p~ 7 with 7 = 2/3.

PACS numbers:84.35+i, 05.40—a, 05.50+0, 87.18.Sn

Two limiting-case topologies have been extensively
consideredn theliterature. Thefirst is theregularlattice,
or regularnetwork, which hasbeenthe chosentopology
of innumerablephysicalmodelssuchas the Ising model
or percolation[1-3]. Theseconds the randomgraph,or
randomnetwork, which hasbeenstudiedin mathematics
andusedin both naturalandsocialscienceg4—16].

Erdésandco-workersstudiedextensivelythe properties
of randomnetworks—see[17] for a review. Most of
this work concentratedn the casein which the number
of verticesis kept constantbut the total numberof links
betweenverticesincreaseqg17]: The Erdés-Rényiresult
[18] statesthat for many important quantitiesthereis a
percolationliketransitionat a specificvalueof the average
numberof links pervertex. In physics,randomnetworks
are used,for example,in studiesof dynamicalproblems
[19,20],spinmodelsandthermodynamic§0,21],random
walks [22], and quantumchaos[23]. Randomnetworks
arealsowidely usedn economicsandothersocialsciences
[8,24,25]to model,for example jnteractingagents.

In contrastto thesetwo limiting topologies, empiri-
cal evidence[26,27] suggestghat many biological, tech-
nological, or social networks appearto be somewhere
in betweentheseextremes. Specifically, many real net-
works seemto sharewith regular networksthe concept
of neighborhoodwhich meanghatif verticesi and; are
neighborghentheywill havemanycommonneighbors—
which is obviously not true for a randomnetwork. On
the otherhand,studieson epidemicq14,15,26]showthat
it cantake only a few “steps” on the network to reach
a given vertex from any other vertex. This is the fore-
most propertyof randomnetworks,which is not fulfilled
by regularnetworks.

To bridge the two limiting cases,and to provide a
modelfor real-worldsystemg28,29], Wattsand Strogatz
[26,27] haverecentlyintroduceda new type of network
which is obtainedby randomizinga fraction p of thelinks
of the regularnetwork. As in Ref. [26], we consideras
an initial structure(p = 0) the one-dimensionategular
network where eachvertexis connectedo its z nearest
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neighbors. For 0 < p < 1, we denotethese networks
disordered,and keep the name random network for the
case p = 1. Reference[26] reports that for a small

valueof the parametep —whichinterpolatedetweerthe
regular (p = 0) and random(p = 1) networks—there
is an onsetof “small-world” behavior. The small-world
behavioris characterizedby the fact that the distance
betweenany two verticesis of the order of that for a
random network and, at the sametime, the conceptof

neighborhoods preservedasfor regularlattices(Fig. 1).

The effect of a changein p is extremelynonlinearasis

visually demonstratedby the differencebetweenFigs. 1a
and 1d and Figs. 1b and 1e where a very small change
in the adjacencymatrix leadsto a dramaticchangein the
distancebetweendifferent pairsof vertices.

Here,we studythe origins of the small-worldbehavior
[28,29]. In particular, we investigateif the onset of
small-world networksis a phasetransitionor a crossover
phenomenaTo answethis questionwe considemotonly
changesn thevalueof p butalsoin the systemsizen.

The motivation for this study is the following. In a
regular one-dimensionahetwork with n verticesand z
links per vertex, the averagedistance{ betweentwo
verticesincreasesas n/(2z)—the distanceis definedas
the minimum numberof stepsbetweenthe two vertices.
Theregularnetworkis similar to the streetsof Manhattan:
Walking along5th Avenuefrom WashingtonSquarePark
on 4th Streetto Central Park on 59th Street,we have
to go past55 blocks. On the other hand,for a random
network, each“block” brings us to a point with z new
neighbors. Hence,the numberof verticesincreaseswith
the numberof stepsk asn ~ z¥, which implies that €
increaseasinn/Inz. Therandomnetworkis thensimilar
to a strangesubwaysystemthat would directly connect
different parts of Manhattanand enableus to go from
WashingtonSquareParkto CentralParkin just onestop.
In view of thesefacts, it is naturalto enquireif the change
from large world (¢ ~ n) to small world (€ ~ Inn) in
disorderechetworksoccursthrougha phasetransitionfor
somegivenvalueof p [30] or if, for anyvalueof p, there
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FIG. 1. Effect of disorderon the distancebetweenverticesof the network (go to http://polymer.bu.ediramaral Networks.html
for color pictures). We considerhere matriceswith z = 10, n = 128, and with periodic boundaryconditions,that is, vertex 1
follows vertexn. Adjacencymatricesfor (a) a regularone-dimensionahetwork where eachvertexis connectedo its z nearest
neighbors(b) a disorderechetworkwith p = 0.01, and(c) a randomnetwork. Black indicatesthata link is presentbetweenthe
two verticeswhile gray indicatesthe absenceof a link. Note that (a) and (b) are nearlyidentical. Distancematricesfor (d) the
regularnetwork, (e) the disorderednetwork with p = 0.01, and (f) the randomnetwork. We usethe relief of the surfaceanda
gray scaleto representhe distancebetweentwo vertices. Greaterheightindicateslargerdistance. The gray scaleis the samefor
the relief and for the contourlines: Distanceincreasedrom very dark gray to gray to light gray to dark gray. For the regular
network, the contourlines are parallel to the diagonal. On the other hand,for the disorderednetwork the contourlines “circle”
aroundspecificlinks that act as “throughways” of the network. This effect preventsthe distancebetweenany two verticesfrom

everbecominglarge,thatis, of the orderof the systemsize.

is a crossoversize n*(p) below which our networkis a
largeworld andabovewhichit is a smallworld.

In the presentLetter, we reportthat the appearancef
the small-world behavioris not a phasetransitionbut a
crossoveiphenomena.We proposethe scalingansatz,

{(n,p) ~ n“F(%), 1)

whereF(u < 1) ~ u, F(u > 1) ~ Inu, andn™ isafunc-
tion of p [31]. Naively, we would expectthat, whenthe
averagemumberof rewiredlinks, pnz /2, ismuchlessthan
one,thenetworkshouldbein thelarge-worldregime. On
theotherhand,whenpnz/2 > 1, thenetworkshouldbea
smallworld [32]. Hence the crossovessizeshouldoccur
for n*p = O(1), which implies n* ~ p~7 with 7 = 1.
Thisresultreliesonthefactthatthecrossovefrom largeto

smallworldsis obtainedwith only a smallbut finite frac-

tion of rewiredlinks. We find thatthe scalingansatz(1)

is indeedverified by the averagedistancef betweenany

two verticesof thenetwork. Wealsoidentify thecrossover
sizen™ abovewhichthe networkbehavessa smallworld,

andfind thatit scalesasn® ~ p~7 with 7 = 2/3, distinct

from thetrivial expectationr = 1.

Next, we define the model and presentour results.
We startfrom a regularone-dimensionahetwork with n
vertices,eachconnectedo z neighbors. We then apply
the “rewiring” algorithm of [26] to this network. The
algorithm prescribesthat every link hasa probability p
of being broken and replacedby a new random link.
We replacethe broken link by a new one connecting
one of the original verticesto a new randomly selected
vertex. Eachof the othern — 2 vertices—we exclude
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the other vertex of the broken link—has an a priori
equalprobability of beingselectedbut we thenmakesure
that there are no duplicatelinks. Hence,the algorithm
preserveshetotal numberof links whichis equalto nz /2.
A quantity that is affectedby the rewiring algorithm is
the probability distribution of local connectivities. For
p = 0, this probability is narrowly peakedaroundz, but
it getsbroademwith increasingp. For p = 1, theaverage
andthe standarddeviationof thelocal connectivityare of
the sameorderof magnitudeandequalto z.
Oncethedisorderedetworkis createdyve calculatethe
distancebetweenany two verticesof the networkand its
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FIG. 2. Determinationof the crossoversize n*. (a) Semilog
plot of € versusnetwork size for two representativevaluesof
p andfor z = 20. Following Egs.(1)—(3), we candetermine
n*—apartfrom a multiplicative constart—from the asymptotic
slopeof € againstinn. (b) Scalingof n* with p for the three
valuesof z discussedn thetext. Thecurvesfor z = 20 and30
havebeenshiftedup so asto coincidein the regionwherethey
scaleasa powerlaw. Following Eg. (3), we makea power-law
fit to n*(p) for p < 1 andobtainT = 2/3.
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averagesaluef. To calculatethedistancefor eachpair of
vertices,we usethe Moore-Dijkstraalgorithm[33] whose
executiontime scaleswith network sizeasn®Inn. We
perform between100 and 300 averagesver realizations
of the disorderfor eachpair of valuesof n andp.

Here,we presentesultsfor threevaluesof connectivity
z = 10, 20, and 30 and systemsizesup to 1000. The
scalingansatz1) enablesisto determinen™( p) from £(n)
at fixed p. Indeed,€(n > n*) ~ n*Inn which implies
thatn* is the asymptoticvalue of d¢/d(Inn) [Fig. 2(a)].
Figure 2(b) showsthedependencef n* on p for different
valuesz. We hypothesizehat

1

n* — ns P "g(p), (2)

wherethetermin z arisesfrom thefactthat¢ = Inn/Inz
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FIG. 3. Data collapse of €¢(n,p) for z = 10 and different
valuesof p andn. (a) Plot of the scaledaveragedistance
betweenvertices €/n* versusscaled systemsize n/n*. (b)
Samedata as in (a) but in a semilog plot. Note the linear
behaviorof the datafor n < n* andthe logarithmicincreaseof
¢ for large systemsizes.
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for a random network (p = 1), and g(p — 1) — 0.
Moreover, g(p) approachesa constant as p — 0,
leadingto

nt~p, 3)
for small p. Becauseof the effect of ¢ and the fact
that n < 1000 in our numerical simulations, we are
constrainedo estimater from the region2.5 X 107* <
p <2 X 1072, For all valuesof z, we obtain 7 =
0.67 * 0.10 (Fig. 2).

Using this value of = andthe scalingform (1), we are
able to collapseall the valuesof {¢(n, p) onto a single
curve (Fig. 3). This datacollapseconfirms our scaling
ansatzandestimateof 7.

In summary,we have shownthat the onsetof small-
world behavioris a crossovephenomenandnot a phase
transitionfrom alargeworld to asmallone. Thecrossover
size scalesas p~ " with 7 = 2/3. The surprising fact
that 7 < 1 shows that the rewiring processis highly
nonlinear and can have dramatic consequencesn the
globalbehaviorof the network. Thisimpliesthatin order
to decrease theradiusof anetworkit is necessaryo rewire
only a few links. We also note that the value of the
exponentr will likely dependon the dimensionalityof the
initial regularnetwork. This point will be addressedn
future work.

We believethat the disorderednetworksintroducedin
[26] may constitutea promisingtopologyfor morerealistic
studiesof manyimportantproblemssuchasflow in elec-
tric power or information networks,spreadof epidemics,
orfinancialsystems.Theresultsreportecheresupporthis
hypothesidecause¢heysuggesthat,for any givendegree
of disorderof the network,if the systemis largerthanthe
crossover size, the network will be in the small-
world regime.
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Erratum: Small-World Networks: Evidencefor a Crossover Picture
[Phys. Rev. Lett. 82, 3180 (1999)]
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We have performednew calculationsusing the breadth-firstsearchalgorithm [1,2]. We are now able to study
systemswith sizesupto n = 5500. As shownin Fig. 1, we now find 7 = 1, in agreementvith the simple argument
givenin our Letter but different from the originally reportednumericalresult(r = 0.67 * 0.10). The reasonfor the
incorrectnumericalresult reportedinitially is the small systemsizeswe studied,which did not allow us to reachthe
asymptoticregime.

We thank A. Barrat[3] andM. E.J. NewmanandD. J. Watts[4] for alertingus to the possibility of an erroron our
estimateof 7. We alsothankM. Argollo de Menezedor directingusto the breadth-firssearchalgorithm.
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FIG. 1. Log-log plot of n* vs p for systemsizesup to 5500 andfor z = 2,4. Note that the curvatureof »n*(p) in the log-log
plot, which givesus a local estimateof 7, is increasingas p decreases.In the inset,we showthat r approached as p — 0. Our
new estimateof 7 is 0.97 = 0.05, consistenwith the value 1 given by a simple scalingargument.
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