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Abstract

In recent years, physicists have started applying concepts and methods of statistical physics
to study economic problems. The word “Econophysics” is sometimes used to refer to this work.
Much recent work is focused on understanding the statistical properties of �nancial time series.
One reason for this interest is that �nancial markets are examples of complex interacting systems
for which a huge amount of data exist and it is possible that �nancial time series viewed from a
di�erent perspective might yield new results. This article reviews the results of three recent phe-
nomenological studies — (i) The probability distribution of stock price 
uctuations: Stock price

uctuations occur in all magnitudes, in analogy to earthquakes — from tiny 
uctuations to drastic
events, such as market crashes. The distribution of price 
uctuations decays with a power-law
tail well outside the L�evy stable regime and describes 
uctuations that di�er by as much as eight
orders of magnitude. In addition, this distribution preserves its functional form for 
uctuations on
time scales that di�er by three orders of magnitude, from 1 min up to approximately 10 d. (ii)
Correlations in �nancial time series: While price 
uctuations themselves have rapidly decaying
correlations, the magnitude of 
uctuations measured by either the absolute value or the square of
the price 
uctuations has correlations that decay as a power-law and persist for several months.
(iii) Correlations among di�erent companies: The third result bears on the application of random
matrix theory to understand the correlations among price 
uctuations of any two di�erent stocks.
From a study of the eigenvalue statistics of the cross-correlation matrix constructed from price

uctuations of the leading 1000 stocks, we �nd that the largest ≈ 1% of the eigenvalues and the
corresponding eigenvectors show systematic deviations from the predictions for a random matrix,
whereas the rest of the eigenvalues conform to random matrix behavior — suggesting that these
1% of the eigenvalues contain system-speci�c information about correlated time evolution of
di�erent companies. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. What is the question?

Statistical physics describes physical systems consisting of a large number of inter-
acting units. On one hand, economic systems such as �nancial markets are similar to
physical systems in that they are comprised of a large number of interacting “agents”.
On the other hand, they are quite di�erent and much more complex because economic
agents are “thinking” units and they interact in complicated ways not yet quanti�ed. In-
deed, most physics approaches to �nance view �nancial markets as a complex evolving
system. Are there any analogs for economics of “physical laws” that describe complex
physical systems? The evolution of various �nancial time series are random — just
as the motion of a particle undergoing Brownian motion — and are as such governed
by probabilistic laws. Speci�cally, we begin by asking what the statistical features that
describe the evolution of �nancial time series are [1–10].

1.2. Why do we care?

Apart from its practical importance and its importance in modern economics, the sci-
enti�c interest in studying �nancial markets stems from the fact that there is a wealth
of data available for �nancial markets which makes it arguably the one complex system
most amenable to quanti�cation and ultimately scienti�c understanding. In addition, it
is also possible that the dynamics underlying �nancial markets are “universal” as ex-
empli�ed in several studies which have noted the statistical similarity of the properties
of observables across quite di�erent markets.
No doubt, economists have studied these systems for long. One might think what

a physicists can contribute to such a �eld. In Economics, one often starts with a
model and tests what the data can say about the model. The physics approach to
this �eld di�ers in that it starts in the spirit of experimental physics where one
tries to uncover the empirical laws which one later models. In almost all of mod-
ern physics theories stochasticity or random behavior is ingrained, from a simple
random walk to �eld theories. Many sophisticated methods were developed to un-
derstand the dynamics of systems with many constituent elements which behave in
a non-deterministic fashion. Hence, in a general sense, it is possible that the meth-
ods and concepts of modern physics can contribute in this realm, as has been shown
by several physicists in recent years. So, in fact the question is: Can methods and
concepts developed in physics be useful in economics? Could economic problems,
approached from a di�erent point of view, yield new insights? For many phys-
icists, studying the economy means studying a wealth of data on a strongly 
uctu-
ating complex system. Indeed, physicists in increasing numbers (Fig. 1) are �nding
problems posed by economics su�ciently challenging to engage their attention
[11–59,120,121].
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Fig. 1. The number of articles on econophysics that have appeared on the cond-mat preprint server and in
the journal Physica A as of October 1999, obtained from the Los Alamos webserver and the Science citation
index respectively using the keywords stock, market, price, �nance, �nancial, and options.

1.3. What do we do?

Recent studies attempt to uncover and explain the statistical properties of �nancial
time series such as stock prices, stock market indices or currency exchange rates.
The interactions between the di�erent agents comprising �nancial markets generate
many observables such as the transaction price, the share volume traded, the trading
frequency, and the values of market indices. Recent empirical studies are based on the
analysis of price 
uctuations. This talk reviews recent results on (a) the distribution
of stock price 
uctuations and its scaling properties, (b) time-correlations in �nancial
time series, and (c) correlations among the price 
uctuations of di�erent stocks. Space
limitations restrict us to focusing mainly on our group’s work; a more balanced account
can be found in two recent books [5,6], and two other recent international conferences
[8–10]. Recent work in this �eld also focuses on applications such as risk control,
derivative pricing, and portfolio selection [60,61], which shall not be discussed in this
work. The interested reader should consult, for example, Refs. [5,6,62–69].

2. Distribution of price 
uctuations

The recent availability of “high frequency” data allows one to study economic time
series on a wide range of time scales varying from seconds up to a few months. For
example, our recent works [40,70–76] involve the analysis of (a) 1-min and daily
records of the S&P 500 index (Fig. 2a), an index of New York Stock Exchange that
consists of 500 companies, often used as a benchmark to gauge the performance of
the US stock markets, and (b) 4-yr data for every transaction for the leading 1000
companies, that records the prices, the shares traded, and the trading times.
The S&P 500 index Z(t) from 1962–96 has an overall upward drift—interrupted by

drastic events such as the market crash of 19 October 1987 (Fig. 2a). One analyzes
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Fig. 2. (a) The daily records of the S&P 500 index for the 35-yr period 1962–96 on a linear-log scale. Note
the large jump which occurred during the market crash of 19 October 1987. Sequence of (b) 10min returns
and (c) 1month returns of the S&P 500 index, normalized to unit variance. (d) Sequence of i.i.d. Gaussian
random variables with unit variance, which was proposed by Bachelier as a model for stock returns [1]. For
all 3 panels, there are 850 events — i.e., in panel (b) 850 min and in panel (c) 850 month. Note that, in
contrast to (b) and (c), there are no large events in (d).

the di�erence in logarithm of the index, often called the return G(t) ≡ loge Z(t +
�t) − loge Z(t), where �t is the time scale investigated (Fig. 2b). One only counts
the number of minutes during the opening hours of the stock market. It is apparent
from Fig. 2b that when one analyzes returns on short time scales, large events are
much more likely to occur, in contrast to a sequence of Gaussian distributed random
numbers of the same variance (Fig. 2d). As one analyzes returns on larger time scales,
this di�erence is apparently much less pronounced (Fig. 2c). In order to understand
this process, one starts by analyzing the probability distribution of returns on a given
time scale �t, which in our study, varies from 1 min up to a few months.
The nature of the distribution of price 
uctuations in �nancial time series is a long

standing open problem in �nance which dates back to the turn of the century. In
1900, Bachelier proposed the �rst model for the stochastic process of returns — an
uncorrelated random walk with independent, identically Gaussian distributed (i.i.d.)
random variables [1]. This model is natural if one considers the return over a time
scale �t to be the result of a large number of independent “shocks”, which then
lead by the central limit theorem to a Gaussian distribution of returns [1]. However,
empirical studies [4,40–43] show that the distribution of returns has pronounced tails
in striking contrast to that of a Gaussian. Despite this empirical fact, the Gaussian
assumption for the distribution of returns is widely used in theoretical �nance because
of the simpli�cations it provides in analytical calculation; indeed, it is one of the
assumptions used in the classic Black–Scholes option pricing formula [77].
In his pioneering analysis of cotton prices, Mandelbrot observed that in addition to

being non-Gaussian, the process of returns shows another interesting property: “time
scaling” — that is, the distributions of returns for various choices of �t, ranging from
1 d up to 1 month have similar functional forms [4]. Motivated by (i) pronounced tails,
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and (ii) a stable functional form for di�erent time scales, Mandelbrot [4] proposed that
the distribution of returns is consistent with a L�evy stable distribution [2,3].
Conclusive results on the distribution of returns are di�cult to obtain, and require a

large amount of data to study the rare events that give rise to the tails. More recently,
the availability of high frequency data on �nancial market indices, and the advent of
improved computing capabilities, has facilitated the probing of the asymptotic behavior
of the distribution. For example, Mantegna and Stanley [40] analyzed approximately
1 million records of the S&P 500 index. They report that the central part of the dis-
tribution of S&P 500 returns appears to be well �t by a L�evy distribution, but the
asymptotic behavior of the distribution of returns shows faster decay than predicted
by a L�evy distribution. Hence, Ref. [40] proposed a truncated L�evy distribution — a
L�evy distribution in the central part followed by an approximately exponential trunca-
tion — as a model for the distribution of returns. The exponential truncation ensures
the existence of a �nite second moment, and hence the truncated L�evy distribution is
not a stable distribution [78,79]. The truncated L�evy process with i.i.d. random vari-
ables has slow convergence to Gaussian behavior due to the L�evy distribution in the
center, which could explain the observed time scaling for a considerable range of time
scales [40].
Recent studies [72–75,80] on considerably larger time series using larger databases

show quite di�erent asymptotic behavior for the distribution of returns. Our recent work
[72–75] analyzed three di�erent databases covering securities from the three major US
stock markets. In total, we analyzed approximately 40 million records of stock prices
sampled at 5 min intervals for the 1000 leading US stocks for the 2-yr period 1994
–95 and 35 million daily records for 16 000 US stocks for the 35-yr period 1962–96.
We study the probability distribution of returns (Fig. 3a–c) for individual stocks over
a time interval �t, where �t varies approximately over a factor of 104 — from 1min
up to more than 1month. We also conduct a parallel study of the S&P 500 index.
Our key �nding is that the cumulative distribution of returns for both individual

companies (Fig. 3c) and the S&P 500 index (Fig. 3a) can be well described by a
power-law asymptotic behavior, characterized by an exponent � ≈ 3, well outside the
stable L�evy regime 0¡�¡ 2. Further, it is found that the distribution, although not a
stable distribution, retains its functional form for time scales up to approximately 16 d
for individual stocks and approximately 4 d for the S&P 500 index, Fig. 3b. For
larger time scales our results are consistent with break-down of scaling behavior, i.e.,
convergence to Gaussian [72–75]. Similar results have also been found for currency
exchange data [80].

3. Correlations in �nancial time series

In addition to the probability distribution, an aspect of equal importance for the
characterization of any stochastic process is the quanti�cation of correlations. Studies
of the autocorrelation function of the returns show exponential decay with characteristic
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Fig. 3. (a) Log–log plot of the cumulative distribution of the normalized 1 min returns for the S&P 500 index.
Power-law regression �ts in the region 36g650 yield �=2:95 ± 0:07 (positive tail), and �=2:75 ± 0:13
(negative tail). For the region 0:56g63, regression �ts give �= 1:6± 0:1 (positive tail), and �= 1:7± 0:1
(negative tail). (b) Log–log plot of the cumulative distribution of normalized returns of the S&P 500 index.
The positive tails are shown for �t = 16; 32; 128; 512 min. Power-law regression �ts yield estimates of the
asymptotic power-law exponent � = 2:69 ± 0:04, � = 2:53 ± 0:06, � = 2:83 ± 0:18 and � = 3:39 ± 0:03 for
�t=16; 32; 128 and 512 mins, respectively. (c) The positive and negative tails of the cumulative distribution
of the normalized returns of the 1000 largest companies in the TAQ database for the 2-yr period 1994–1995.
The solid line is a power-law regression �t in the region 26x680.

decay times of only 4min [81] consistent with the e�cient market hypothesis [82]. This
is paradoxical, for in the previous section, we have seen that the distribution of returns,
in spite of being a non-stable distribution, preserves its shape for a wide range of �t.
Hence, there has to be some sort of correlations or dependencies that prevent the central
limit theorem to take over sooner and preserve the scaling behavior.
Indeed, lack of linear correlation does not imply independent returns, since there

may exist higher-order correlations. Recently, Liu and his collaborators found that the
amplitude of the returns, the absolute value or the square — closely related to what
is referred to in economics as the volatility [83–87] — shows long-range correlations
[45,46,49–51,70,71,88,89] with persistence [90] up to several months, Fig. 4a and b.
They analyzed the correlations in the absolute value of the returns [70,71] of the
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Fig. 4. Plot of (a) the power spectrum S(f) and (b) the detrended 
uctuation analysis F(t) of the absolute
values of returns g(t), after detrending the daily pattern [70,71] with the sampling time interval �t =1min.
The lines show the best power law �ts (R values are better than 0:99) above and below the crossover
frequency of f×=(1=570)min−1 in (a) and of the crossover time, t×=600min in (b). The triangles show
the power spectrum and DFA results for the “control”, i.e., shu�ed data.

S&P 500 index using traditional correlation function estimates, power spectrum and
the recently developed detrended 
uctuation analysis (DFA). All the three methods
show the existence of power-law correlations with a cross-over at approximately 1.5 d.
For the S&P 500 index, DFA estimates for the exponents characterizing the power-law
correlations are �1 = 0:66 for short time scales smaller than ≈ 1:5 d and �2 = 0:93
for longer time scales up to a year, Fig. 4b. For individual companies, the same
methods yield �1=0:60 and �2=0:74, respectively. The power spectrum gives consistent
estimates of the two power-law exponents, Fig. 4a.

3.1. What is volatility?

The long memory in the amplitude of returns suggests that the variance of price
changes is itself a random variable. Hence, it is useful to de�ne a subsidiary process
— the “instantaneous” standard deviation — referred to as the volatility. Volatility of
a certain stock measures how much it is likely to 
uctuate at a given time. It can
also be related to the amount of information arriving at any time. The volatility can
be estimated for example by the local average of the absolute values or the squares of
the returns.
In their recent work on the statistical properties of volatility Liu and collaborators

show that the volatility correlations show asymptotic 1=f behavior [70,71,89]. Using
the same databases as above, Liu and his collaborators also study the cumulative dis-
tribution of volatility [71,89] and �nd that it is consistent with a power-law asymptotic
behavior, characterized by an exponent � ≈ 3, just the same as that for the distribution
of returns. For individual companies also, one �nds a similar power law asymptotic
behavior [71]. In addition, it is also found that the volatility distribution scales for a
range of time intervals just as the distribution of returns.
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4. Correlations among di�erent units

Recently, the problem of understanding the correlations among the returns of dif-
ferent stocks has been addressed by applying methods of random matrix theory to the
cross-correlation matrix [91–94]. Aside from scienti�c interest, the study of correlations
between the returns of di�erent stocks is also of practical relevance in quantifying the
risk of a given portfolio [60,61].
To motivate the problem, consider a box containing gas particles that do not in-

teract with each other and suppose that we have a smart computer that records the
velocities of each one of these particles at regular time intervals that are very small.
From the in�nitely-many records of the velocities of each of these gas particles, if we
were to ask what sort of correlations are there between these particles, the answer is
very simple: there are not any correlations. But suppose some of these gas particles
are pair-wise connected together by “invisible” strings, and we do not know a pri-
ori which of these particles are connected. We still could construct a cross-correlation
matrix from the time series of velocities. The non-zero entries would then correspond
to the pairs that are connected. We can take this simple analogy one step further:
suppose we do not connect these particles pairwise, but instead we connect them in
larger clusters. How can we say which clusters were connected together in the be-
ginning? To add to the problem, if one has only �nite number of records of the
velocity (which gives an error in the calculation of the cross-correlations) the prob-
lem becomes quite di�cult. In the following, we will see that the problem of es-
timating genuine correlations between �nancial time series is not unlike the above
picture.
Consider the equal-time correlation of stock returns for a given pair of companies.

Since the market conditions may not be stationary, and the historical records are �nite,
it is not clear if a measured correlation of returns of two stocks is just due to “noise”
or genuinely arises from the interactions among the two companies. Moreover, unlike
most physical systems, there is no “algorithm” to calculate the “interaction strength”
between two companies (as there is for, say, two spins in a magnet). The problem is
that although every pair of companies should interact either directly or indirectly, the
precise nature of interaction is unknown.
In some ways, the problem of interpreting the correlations between individual stock-

returns is reminiscent of the di�culties experienced by physicists in the �fties, in
interpreting the spectra of complex nuclei. Large amounts of spectroscopic data on
the energy levels were becoming available but were too complex to be explained by
model calculations because the exact nature of the interactions were unknown. Ran-
dom matrix theory (RMT) was developed in this context, to deal with the statistics
of energy levels of complex quantum systems [96–102]. With the minimal assumption
of a random Hamiltonian, given by a real symmetric matrix with independent random
elements, a series of remarkable predictions were made and successfully tested on the
spectra of complex nuclei [98,99]. RMT predictions represent an average over all possi-
ble interactions [100–102]. Deviations from the universal predictions of RMT identify
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system-speci�c, non-random properties of the system under consideration, providing
clues about the underlying interactions [96,97].
Recent studies [91–93] analyzed the cross-correlation matrix C ≡ Cij ≡ 〈GiGj〉 −

〈Gi〉〈Gj〉=�i�j of the returns at 30-min intervals of the largest 1000 US stocks for the
2-yr period 1994–95. Reference [93] analyzes the statistical properties of C by applying
techniques of random matrix theory (RMT). First, [93] tests the eigenvalue statistics of
the cross-correlation matrix for universal properties of real symmetric random matrices
such as the Wigner distribution for the eigenvalue spacing distribution and eigenvalue
correlations (Fig. 5). Remarkably, they �nd that eigenvalue statistics of the correlation
matrix agree well with the universal predictions of random matrix theory for real sym-
metric random matrices, in contrast to our naive expectations for a strongly interacting
system.
Deviations from RMT predictions represent genuine correlations. In order to inves-

tigate deviations, we compute the distribution of the eigenvalues of C and compare
with the prediction [92,93] for uncorrelated time series [95]. We �nd that the statis-
tics of all but a few of the largest eigenvalues in the spectrum of C agree with the
predictions of random matrix theory, but there are deviations for a few of the largest
eigenvalues [92,93]. The deviations of the largest few eigenvalues from the random

Fig. 5. (a)The probability density of the eigenvalues of the normalized cross-correlation matrix C for the
1000 largest stocks in the TAQ database for the 2-yr period 1994–95. Recent analytical results [95] for
cross-correlation matrices generated from uncorrelated time series predict a �nite range of eigenvalues de-
pending on the ratio R of the length of the time series to the dimension of the matrix [92,95]. In our
case R = 6:448 corresponding to eigenvalues distributed in the interval 0:376�k61:94 [95]. However, the
largest eigenvalue for the 2-yr period (inset) is approximately 30 times larger than the maximum eigenvalue
predicted for uncorrelated time series. The inset also shows the largest eigenvalue for the cross-correlation
matrix for 4 half-year periods — denoted A, B, C, D. The arrow in the inset corresponds to the largest
eigenvalue for the entire 2-yr period, �1000 ≈ 50. The distribution of eigenvector components for the large
eigenvalues, well outside the bulk show signi�cant deviations from the Gaussian prediction of RMT, which
suggests “collective” behavior or correlations [96,97] between di�erent companies. The largest eigenvalue
would then correspond to the correlations within the entire market [92,93]. (b) Nearest-neighbor (nn) spacing
distribution of the eigenvalues of C after unfolding [96,97]. The bold line is the RMT prediction for real
symmetric matrices, often called as the Wigner distribution.
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matrix result are also found when one analyzes the distribution of eigenvector compo-
nents. Speci�cally, the largest eigenvalue which deviates signi�cantly (25 times larger
than random matrix bound) has almost all components participating equally and thus
represents the correlations that pervade through the entire market. The other larger
eigenvalues represent collective modes that have approximately 20 participants on the
average. This result is in agreement with the results of Laloux and collaborators [92]
for the eigenvalue distribution of C on a daily time scale.
One can ask whether the cross-correlations [103] between di�erent companies found

above result in scaling behavior, as in the case of critical phenomena, where long-range
correlations between di�erent subunits give rise to scaling behavior. Indeed, studies
have shown empirical evidence for scaling, not only among companies, but also in a
wider class of organizations such as countries, and universities as we shall see below.

5. Discussion and Conclusions

The empirical results shown above clearly beckon explanation. For example, in the
�rst two sections, we have looked mainly at two empirical results: (i) the distribution
of 
uctuations, which shows a power-law behavior well outside the stable L�evy regime,
and yet preserves its shape — that is, it scales — for a range of time scales and (ii)
the long-range correlations in the amplitude of price 
uctuations. How are the two
related?
Previous explanations of scaling relied on L�evy stable [4,104–109] and exponentially-

truncated L�evy processes [5,40]. However, the empirical data that we analyze are not
consistent with either of these two processes. In order to con�rm that the scaling is
not due to a stable distribution, one can randomize the time series of 1 min returns,
thereby creating a new time series which contains statistically independent returns.
By adding up n consecutive returns of the shu�ed series, one can construct the nmin
returns. Both the distribution and its moments show a rapid convergence to Gaussian
behavior with increasing n, showing that the time dependencies, speci�cally volatility
correlations are intimately connected to the observed scaling behavior [74].
Using the statistical properties summarized above, can we attempt to deduce a statisti-

cal description of the process which gives rise to this output? For example, the standard
ARCH model [110,111] reproduces the power-law distribution of returns; however it
assumes �nite memory on past events and hence is not consistent with long-range
correlations in volatility. On the other hand, the distribution of volatility and that of
returns which have similar asymptotic behavior, however support the central ARCH
hypothesis that g(t)= � v(t), where � is an i.i.d. Gaussian random variable independent
of the volatility v(t), and g(t) denotes the returns. A consistent statistical description
may involve extending the traditional ARCH model to include long-range volatility
correlations [112].
A more fundamental question would be to understand the above results starting

from a microscopic setting. Researchers have also studied microscopic models that
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might give rise to the empirically observed statistical properties of returns [6,7,11–14].
For example, Lux and Marchesi [11–14] recently simulated a microscopic model of
�nancial markets with two types of traders, what they refer to as “fundamentalist” and
“noise” traders. Their results reproduce the power-law tail for the distribution of returns
and also the long-range correlations in volatility.
In the last section, we found evidence for di�erent modes of correlations between

di�erent companies. For example, the largest eigenvalue of the cross-correlation matrix
showed correlations that pervade the entire market. Could it be that the above observed
scaling properties are related to how correlations propagate from one unit to the other
such as occur in critical phenomena? Researchers have studied economic data from
the physics perspective of a complex system with each unit depending on the other.
Speci�cally, the possibility that all the companies in a given economy might interact,
more or less, like a spin glass. In a spin glass, each spin interacts with every other
spin — but not with the same coupling and not even with the same sign. For example,
if the stock price of a given business �rm A decrease by, e.g., 10%, this will have an
impact in the economy. Some of these will be favorable — �rm B, which competes
with A, may experience an increase in market share. Others will be negative — ser-
vice industries that provide personal services for �rm A employees may experience a
drop-o� in sales as employee salaries will surely decline. There must be positive and
negative correlations for almost any economic change. Can we view the economy as
a complicated spin glass?
To approach this problem, M.H.R. Stanley and M.A. Salinger �rst located and se-

cured a database — called COMPUSTAT — that lists the annual sales of every �rm in
the United States. With this information, M. H. R. Stanley and co-workers calculated
histograms of how �rm sizes change from one year to the next [113,114]. They �nd that
the distribution of growth rates of �rm sales has the same functional form regardless of
industry or market capitalization. Moreover, the width of these distributions decrease
with increasing sales as a power-law with an exponent approximately 1=6. Recently,
similar statistical properties were found for the GDP of countries [115] and for univer-
sity research fundings [116]. Hence, it is not impossible to imagine that there are some
very general principles of complex organizations at work here, because similar empirical
laws appear to hold for data on a range of systems that at �rst sight might not seem to
be so closely related. Buldyrev models this �rm structure as an approximate Cayley tree,
in which each subunit of a �rm reacts to its directives from above with a certain proba-
bility distribution [117]. More recently, Amaral et al. [118] have proposed a microscopic
model that reproduces both the exponent and the distribution function. Takayasu and
Okuyama [119] extended the empirical results to a wide range of countries.
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