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We explore the degree to which concepts developed in statistical physics can be usefully applied to
physiological signals. We illustrate the problems related to physiologic signal analysis with
representative examples of human heartbeat dynamics under healthy and pathologic conditions. We
first review recent progress based on two analysis methods, power spectrum and detrended
fluctuation analysis, used to quantify long-range power-law correlations in noisy heartbeat
fluctuations. The finding of power-law correlations indicates presence of scale-invdréutal
structures in the human heartbeat. These fractal structures are represented by self-affine cascades of
beat-to-beat fluctuations revealed by wavelet decomposition at different time scales. We then
describe very recent work that quantifiesiltifractal features in these cascades, and the discovery
that the multifractal structure of healthy dynamics is lost with congestive heart failure. The analytic
tools we discuss may be used on a wide range of physiologic signal200@ American Institute

of Physics. [DOI: 10.1063/1.1395631

Physiologic signals are generated by complex self-
regulating systems that process inputs with a broad range
of characteristics}= Many physiological time series are
extremely inhomogeneous and nonstationary, fluctuating
in an irregular and complex manner. An important ques-
tion is whether the “heterogeneous” structure of physi-
ologic time series arises trivially from external and intrin-
sic perturbations which push the system away from a
homeostatic set point. An alternative hypothesis is that
the fluctuations are, at least in part, due to the underlying
dynamics of the system. The key problem is how to de-
compose subtle fluctuationg(due to intrinsic physiologic
control) from other nonstationary trends associated with
external stimuli. Until recently, the analysis of the fractal
properties of such fluctuations has been restricted to
second-order linear characteristics such as the power
spectrum and the two-point autocorrelation function.
These analyses reveal that th&actal behavior of healthy,
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free-running physiological systems is often characterized
by 1/f-like scaling of the power spectra® Monofractal
signals, however, are homogeneous and have “linear”
properties. Many physiologic time series—such as heart-
beat interval sequences—are in fact inhomogeneous, sug-
gesting that different parts of the signal have different
scaling properties. In addition, there is evidence that
heartbeat dynamics exhibits nonlinear properties°
Such features are often associated with multifractal be-
havior. Up to now, robust demonstration of multifractal-
ity for nonstationary time series has been hampered by
problems related to a drastic bias in the estimate of the
singularity spectrum due to diverging negative moments.
Moreover, the classical approaches based on the box-
counting technique and structure function formalism fail
when a fractal function is composed of a multifractal sin-
gular part embedded in regular polynomial behavior!®
By means of a wavelet-based multifractal formalism, we
show that healthy human heartbeat dynamics exhibits
even higher complexity (than previously expected from
the finding of fractal 1/f scaling which is characterized
by a broad multifractal spectrum?’

© 2001 American Institute of Physics

Downloaded 24 Sep 2001 to 128.197.41.42. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



642 Chaos, Vol. 11, No. 3, 2001 Ivanov et al.

1.6 —
14l (a) Healthy - Wake 102 E& =~ Nocturnal
== + Daytime

10 E s * k-

o e ]
E o=l 3

10 3 g = E

:'j (b) Healthy - Sleep 7 s

: 10° F - =c 3

1.0 10'3 Y I ......fT*”.......’

08 10*  10° 107 10" 10°
0.6 f[beat ]

0.4 3.0 ———rrrrr———rr————rrrrr—

0 5000 10000 15000 ’ !
heat number

1.2+
1.0
0.8 |
0.6
0.4

S

Ty

0 5000 10000 15000 20000 25000

Interbeat Interval [sec]

FIG. 1. Consecutive heartbeat intervals are plotted versus beat number for 6
h recorded from the same healthy subject duriay:wake period: 12:00

p.m. to 6:00 p.m. andb) sleep period: 12:00 a.m. to 6:00 a.tNote that

there are fewer interbeat intervals during sleep due to the larger average of
the interbeat intervals, i.e., slower heart rate.

I. INTRODUCTION

In recent years the study of the statistical properties of
heartbeat interval sequences has attracted the attention of re-
searchers from different field§-?2Analysis has focused ex- 0.0
tensively on interbeat interval variability as an important ' 10 1_9'2
guantity to help elucidate possibly nonhomeostatic physi- Jlbeat ]

ologic variability becausdi) the heart rate is under direct ] )
FIG. 2. (Top) Power spectrum fim 6 h records of interbeat intervals for a

neorpautonomm Contror’"_) mte_rbeat mtervf’_i_l Va”ab”!ty IS healthy subject during day and nigkBottom) We plot the local exponerng
readily measured by noninvasive means, @inglanalysis of  caiculated from the power spectrum for six healthy subjects. The local value
these heart rate dynamics may provide important practicalf 8 shows a persistent drift, sw true scaling existsThis is not surprising,
diagnostic and prognostic information. Figure 1 shows a carbaving in mind the nonstationarity of the signals. The horizontal line shows
L . . . the value of the exponent obtained from a least square fit to the data.
diac interbeat time series—the output of a spatially and tem-
porally integrated neuroautonomic control system. The time
series shows “erratic” fluctuations and “patchiness. Thesefrequency content of a signal. Fourier and related power

fluctuations are usually ignored in conventional StUd'esspectrum analysis have proved particularly useful for recog-

){’_Vh'Ch focu]:st onl at)velra:jged ‘gue_mnffs.dl_nt_fact,_ t:etﬁe fIl;Ctuahizing the existence and role of characteristic frequencies
lons are often labeled as "noise 1o distinguish them from (time scalesin cardiac dynamics. The analysis of heartbeat

the true “signal” of interest. Generally, in the conventional fluctuations focused initially on short time oscillations asso-

approach it is assumed that there is no meaningful structur&ated with breathing and blood pressure as well as other

in apparent noise and, therefore, one does not expect to gajly 2021 sydies of longer heartbeat records revealed
any understanding about the underlying system through they o cale-free behavidr A power spectrum calculation
study of these fluctuations. However, by adapting and ex; s, mes that the signal studied is statioR&fy,and when
tending methods developed in modern statistical physics an bplied to nonstationary time series can Iead, to misleading
”°”"”ea!r dyrjamics, we f_ind that the physiologic ﬂucu.Jationsresults. However, time series of beat-to-beRR) heart rate
shown Ien 13F1|7Qj és_lzs exhibit an unexpected _h|ddmalmg intervals obtained from digitized electrocardiograms are
structure. =+ Furthermore, _the dynar_mcal patterns of typically nonstationary and fluctuate in an irregular manner
these fluctuations and the associated scaling featirasge in healthy subjects, even at restig. 1(b)].282° Because of
with pathological perturbations. These findings raise the POStis property reseérchers were faced with the task to con-
sibility that understanding the origin of such temporal struc-Sider only pc;rtions of the data and to test these portions for
tu_res an_d their alterations with disedapmay eIuci_date cer- stationarity before performing power spectrum analysis.

tain basic aspects of heart rate control mechanismsfgnd To illustrate the limitations of the power spectrum analy-

may have potential for clinical monitoring. sis for nonstationary time series, we consider 6 h records

(n~=10* beat3 of interbeat intervals for a healthy subject
Il 1 FLUCTUATIONS IN HEARTBEAT DYNAMICS during sleep and wake activity. We show that theradgrue

A quantity widely used to measure correlations in a timel/f power spectrum for the interbeat intervals in the real
series is the power spectrum, which measures the relativeeart. Instead, we find that the power spectrum of the inter-

-3
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02 B e —1<B<0, thenl(n) is also correlated. However, the values
< Nocturnal " of | are organized such that positive and negative values are
. |+ Daytime ol more likely to alternate in tim¢“anticorrelation”).*°
00 F ﬁ 3 For interbeat interval increments from records of healthy
F f ] subjects we obtaiB=— 1, suggestinghontrivial power-law
S 0 F o~ T 1 long-range correlations in the heartbeat. Furthermore, the an-
o F E*% ] ticorrelation properties of indicated by the negativg are
10° b iﬁ:ﬂgﬁ:i;: o consistent with a nonlinear feedback system that “kicks” the
2 % heart rate away from extremé&s>3 This tendency, however,
10° '_ %f _. does not only operate locally on a beat-to-beat basis, but over
3 a wide range of time scales up to thousands of béats 3.
107 :. L T The emergence of such scale-invariant properties in the
10" 10° 107 10" 10° seemingly “noisy” heartbeat fluctuations is believed to be a
Jf[beat ] result of highly complex, nonlinear mechanisms of physi-
e - ologic controf?*:3

3.0 A ——rrrrrey

Extracting increments from a time series is only a first
step in effectively treating problems related to nonstationari-
ties. Note that the power spectrum of the increments in the
J heartbeat intervalgFig. 3) does notdistinguish between
wake and sleep dynamics. One needs to be better, e.g., by
taking into account the presence of polynomial trends in the
times series. We discuss such an approach in the following
. section.

. MONOFRACTAL ANALYSIS: LONG-RANGE
ANTICORRELATIONS IN THE HEARTBEAT
FLUCTUATIONS

Recently the detrended fluctuation analysigDFA)
method’ was introduced to detect long-range correlations in
FIG. 3. (Top) Power spectrum of the interbeat interval increments from 6 hphysiological fluctuations when these are embedded in a
record for the same healthy subject as in Fig. 2. Error bars are calculated %%emingly nonstationary time series. The advantage of the

the standard deviation of the power spectrum values for frequencies Withi'bFA method over conventional methods. such as power
the binning interval(Bottom) The local exponeng, for the power spectrum ’ P

of the increments for the same six healthy subjects as in Fig. 2. Note that theP€ctrum analysis, is that it avoids the spurious detection of
exponentg, fluctuates around an average value close to ongpsoscaling  apparent long-range correlations that are an artifact of non-

does exi;tThe horizontal line shows Fhe value Bf obtained from a least stationarity related to linear and higher-order polynomial
B fc';n'\r'](;ttel;:Z‘g;e;’fvrééhf?;;??hg'f;%ﬁgfes ptfé;';’ae_e” wake and sleep dyrangs in the data. The essence of the DFA method is as
follows: the average root-mean-square fluctuation function
F(n) is obtained after integrating and detrending the data,
beat intervals has different regimes with different scaling bei.e., subtracting the local polynomial trend in a box of size
havior and that the rounded crossover between the differettata points. The power-law relation betwele(n) and the
regimes is the reason why it seems, to first approximation, taumber of data points in a box indicates the presence of
scale as 1/ (Fig. 2). scaling: the fluctuations can be characterized by a scaling
Recent analyses of very long time seriep to 24 h:n exponenta, a self-similarity parameter, defined &4n)
~10° beat$ show that under healthy conditions, interbeat~n®. The DFA method has been tested on control time se-
interval increments$(n) exhibit power-law anticorrelatiorfs.  ries of “built-in” long-range correlations with superposition
Since I(n) is stationary, we can apply standard spectralof a nonstationary external tref@llt has also been success-
analysis techniqueéFig. 3 and we show thatrue scaling  fully applied to detect long-range correlations in human gait,

does exist. ion channel kinetics, and highly heterogeneous DNA
The fact that the log—log plot of the power spectrumsequence§®373*~#10f note is a recent independent review
S,(f) vsfis linear implies of fractal fluctuation analysis methods which determined that

S(f)—f-B ,q  DFAwas one of the most robust methdds.

n(f) ' (2.0 It is known that circadian rhythms are associated with
The exponeng is related to the mean fluctuation func- periodic changes in key physiological process&s* Typi-

tion exponenta by B=2a—1 (Refs. 30 and 3lland can cally the differences in the cardiac dynamics during sleep

serve as an indicator of the presence and type of correlationand wake phase are reflected in the average and standard

(i) If B=0, there is no correlation in the time serig@) deviation of the interbeat intervald** Such differences can

(“white noise”). (ii) If 0<B<1, thenl(n) is correlated such be systematically observed from plots of the interbeat inter-

that positive values of are likely to be closdin time) to  vals recorded from subjects during sleep and widkg. 1).

each other, and the same is true for negativalues.(iii ) If In recent studies we have reported on sleep—wake differ-
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ences in the distributions of the amplitudes of the fluctua- 10°
tions in the interbeat intervals—a surprising finding indicat-
ing higher probability for larger amplitudes during
sleep'®244°Next, we ask the question if there are character- 10 ¢
istic differences in the scaling behavior between sleep anc ¢ [
wake cardiac dynamics. We hypothesize that sleep and wak
changes in cardiac control may occur on all time scales anc
thus could lead to systematic changes in the scaling proper £
ties of the heartbeat dynamics. Elucidating the nature of =
these sleep—wake rhythms could lead to a better understanc  10* |
ing of the neuroautonomic mechanisms of cardiac regulation
To answer this question we apply the detrended fluctua-
tion analysis(DFA) method. We analyze 30 datasets—each 10 ¢

(a) Healthy

slope=0.8

with 24 h of interbeat intervals—from 18 healthy subjects -+ [ °
and 12 patients with congestive heart faildfane analyze Ant“f“ ‘ ‘
the nocturnal and diurnal fractions of the dataset of each 10 100 1000 10000

subject, which correspond to the Gir=22 000 beatsfrom

midnight to 6:00 a.m. and noon to 6:00 p.m. These periods
incorporate the segments with lowest and highest heart ratr 10
in the time series, which we and others found to be the bes

1 [ (c) Heart Failure

slope=1.2

indirect marker of sleef?** We find that at scales above o
~1 min(>60) the data during wake hours display long- 10"
range correlations over two decades with average exponent = | oo

ayw~1.05 for the healthy group and~1.2 for the heart = R

failure patients. For the sleep data we find a systematic cross &

over at scalen~60 beats followed by a scaling regime ex- 10°

tending over two decades characterized by a smaller expo  10* |

nent: «g~0.85 for the healthy andvg~0.95 for the heart 10" |

failure group[Figs. 4a) and 4c)]. Although the values of the ol

sleep and wake exponents vary from subject to subject, we

find that for all individuals studied, the heartbeat dynamics  °"

during sleep are characterized by a smaller expoHent. 10° Lo o i o -
This analysis suggests that the observed sleep—wak n

scaling diﬁerenges are due to intripsic changgs in the cardia'g:IG 4. Plots of loge(n) vs logn for 6 h wake (open circles and sleep

control mechanisms for the fQ”OW'”Q reaso@:The DF’_A‘ recc;rdé(filled triangles of (a) one typical healthy subjecth) one cosmo-

method removes the “trends” in the interbeat interval S|gna|naut(during orbital flighy; and(c) one patient with congestive heart failure.

which are due, at least in part, to activity, and quantifies theNote the systematic lower exponent for the sleep plitiled triangles,

fluctuations along the trenddii) Responses to external indicating stronger anticorrelation&) As a control, we reshuffle and inte-
grate the interbeat increments from the wagpen squaresand sleep data

St'mu“ should g'ye_ rls_e to a d|fferent type of ﬂucwaﬂons (solid squaresof the healthy subject presented (. We find a Brownian
having characteristic time scales, i.e., frequencies related ftise scaling over all time scales for both wake and sleep phases with an

the stimuli. However, fluctuations in both diurnal and noc-eéxponenta=1.5, as one expects for random walk-like fluctuations.

turnal cardiac dynamics exhibit scale-free behavian The

weaker anticorrelated behavior observed for all wake phase

records cannot be simply explained as a superposition ak,~1.04 for the wake phase an#és~0.82 for the sleep

stronger anticorrelated sleep dynamics and random noise ghase. The values of these exponents indicate that the fluc-

day activity. Such noise would dominate at large scales antuations in the interbeat intervals are anticorrelated for the

should lead to a crossover with an exponent of 1.5. Howevemvake phases and even stronger anticorrelated for the sleep

such crossover behavior is not observed in any of the wakphase. This sleep-wake scaling difference is observed not

phase dataset&ig. 4). Rather, the wake dynamics are typi- only for the group averaged exponents but for each indi-

cally characterized by a stable scaling regime umte5  vidual cosmonaut datasgEig. 4(b)]. Moreover, the scaling

X 10° beats. differences are persistent in time, since records of the same
To test the robustness of our results, we analyze 1€osmonaut taken on different dagsnging from the 3rd to

datasets from six cosmonauts during long-term orbital flighthe 158th day in orbjf exhibit a higher degree of anticorre-

on the Mir space station under the extreme conditions of zertation in sleep.

gravity and high stress activiff. Each dataset contains con- Thus, the larger values for the wake phase scaling expo-

tinuous periods 06 h data under both sleep and wake con-nents observed for healthy subjects cannot be a trivial artifact

ditions. We find that for all cosmonauts the heartbeat intervabf activity. Furthermore, the larger value of the average wake

series exhibit long-range correlations with scaling exponentexponent for the heart failure group compared to the other

consistent with those found for the healthy terrestrial grouptwo groups cannot be attributed to external stimuli either,
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since patients with severe cardiac disease are strongly re
stricted in their physical activity. We note, however, that the
average sleep—wake scaling difference remains the sam
(=0.2) for all three groups. Such sleep—wake changes in the
scaling characteristics may indicate different regimes of in-
trinsic neuroautonomic regulation of the cardiac dynamics,
which may “switch” on and off in accordance with circadian
rhythms. A very recent study confirms our finding of lower
value for the scaling exponent during sleep and shows tha _
different stages of sleefe.qg., light sleep, deep sleep, rapid g ' i
eye movement stagesould be associated with different cor- b
relations in the heartbeat fluctuatiofisThe findings of : Al
strongeranticorrelationd! as well as higher probability for 1A u A 1 !
larger heartbeat fluctuations during sléép**°are of inter- ' ' A "h:
est from a physiological viewpoint, since they suggest that .,
the observed dynamical characteristics in the heartbeat fluc g
tuations during sleep and wake phases are related to intrinsi “*
mechanisms of neuroautonomic control, and support a reas
sessment of the sleep as a surprisingltive dynamical
state. The finding of scaling features in the human heartbea g
and their change with disease or sleep—wake transition hav it
motivated new modeling approaches which may lead to bet- ,
ter understanding the underlying control mechanisms of ]
heartrate regulatioft ]

Before concluding this section we note that recent LUl
work® provides evidence of surprising complexity present in g . .
the temporal organization of the heterogeneiteg., trends
in human heartbeat dynamics. Trends in the interbeat interval
signal are traditionally associated with external stimuli. TOFIG. 5. (Color onling Color-coded wavelet analysis of a heartbeat interval
probe the temporal organization of such heterogeneities wagnal. Thex-axis represents tim(ezl?OOl beatsand they-axis_indi_cates the
ntroduce a_ segmentation aigorifiiand find that the ~Sce o he avelel st 12,000 e D fom Sio s wih e
lengths of segments with different local mean heart rategiycture in the healthy cardiac dynamics—a magnification of the central
follow a power-law distribution. This scale-invariant struc- portion of the top panel with 200 beats on tkexis and wavelet scala
ture is not a Simp'e Consequence of the |ong_range Corre'&i 1,2,...,20 on they—axis shows similar branching patterﬁewer pane).
tions present in the heartbeat fluctuations discussed in this
section. These new findings suggest that relevant physiologi-

cal information may be hidden in the heterogeneities of thg,, gitferent time scaléssuggest the absence of a character-
heartbeat time series, the understanding of which remains gy scale and indicate that the underlying dynamical mecha-
open question. nisms regulating the healthy heartbeat have statistical prop-
erties which aresimilar on different time scales. Such
statistical self-similarity is an important characteristic of
fractal objects>®> However, how can this purported fractal
Many simple systems in nature have correlation func-structure be “visualized” in the seemingly erratic and noisy
tions that decay with time in an exponential way. For sys-heartbeat fluctuations? The wavelet decomposition of beat-
tems comprised of many interacting subsystems, physicist®-beat heart rate signals can be used to provide a visual
discovered that such exponential decays typically do not ocrepresentation of this fractal structutieig. 5. The brighter
cur. Rather, correlation functions were found to decay with acolors indicate larger values of the wavelet amplitutzs-
power-law form. The implication of this discovery is that in responding to large heartbeat fluctuatipasd white tracks
complex systems, there is no single characteristic #m&.  represent the wavelet transform maxima lines. The structure
If correlations decay with a power-law form, we say theof these maxima lines shows the evolution of the heartbeat
system is “scale-free” because there is no characteristic scaliuctuations with scale and time. The wavelet analysis per-
associated with a power law. Since at large time scales tformed with the second derivative of the Gaussidine
power law is always larger than an exponential function,Mexican hatas an analyzing wavelet uncovers a hierarchical
correlations described by power laws are termed “long-scale invariancéFig. 5 (top panel], which is characterized
range” correlations—they are of longer range than exponenby the stability of the scaling form observed for the distribu-
tially decaying correlations. tions and the power-law correlatiofis>>#"The plots reveal
The findings of long-range power-law correlatiéh¥  a self-affine cascade formed by the maxima lines—a magni-
and the recently reported scaling in the distributions of heartfication of the central portion of the top panel shows similar
beat fluctuations*®(i.e., “data collapse” of the distributions branching patterngFig. 5 (lower panel]. Such fractal cas-

"J"fn'

L1 .L'-...;_.il';f

Time

IV. SELF-SIMILAR CASCADES IN THE HEARTBEAT
FLUCTUATIONS
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FIG. 6. (Color) Local Hurst exponents for a multifractal signaltop panel

and the decomposition of this signal into subgstshsequent panglsvith

each local Hurst exponent indicated by the color and each fractal dimensior
indicated by the density of vertical bars. Tkexis represents time and the
vertical bars(y-axis) indicate local Hurst exponents.

cade results from the interaction of many nonlinearly
coupled physiological components, operating on different
Scales(pOIynomlal trends due to da'ly activity are filtered FIG. 7. (Color (a) Consecutive heartbeat intervals measured in seconds are
out). plotted versus beat number from approximgatglh record of a representa-
Thus the wavelet transform, with its ability to remove tive healthy subject. The time series exhibits very irregular and nonstation-

local trends and to extract interbeat variations on dif‘ferenf’lry behavior(b) The top panel displays in color the local Hurst exponents
calculated for the saen3 h record shown ira). The other two panels

time scales, enables us to identify fractal pgtte(mshes; in represent two subsets of the heartbeat interval time seri@s @ach with a
the heartbeat fluctuations even when the signals change asoaal Hurst exponentindicated by the colgrand with a different fractal
result of background interference. Analysis of data fromdimension(indicated by the density of the vertical baréc) The panel
pathologic condition$e.g., sleep apnéazshow a breakdown d}splays in cplor the Iogal Hurgt exp_one_nts calculated fanmpfractal

L . signal—fractional Brownian motion withl =0.6. The homogeneity of the
of these pattern&' Fractal characteristics of cardiac dynam- signal is represented by the nearly monochromatic appearance of the signal
ics and other biological signals can be usefully studied withwhich indicates that the local Hurst exponénis the same throughout the
the generalized multifractal formalism based on the wavelegignal and identical to the global Hurst exponeht

transform modulus maxima method which we discuss in the

next section. ior and thus relate to the local scaling of the time se(f@sg.

6). Thus multifractal signals require many exponents to fully
V. MULTIFRACTALITY: NONSTATIONARITY IN LOCAL characterize their scaling properfi2s®®” and are intrinsi-
SCALING .

cally more complex, anthhomogeneoyghan monofractals.

Monofractal signals are homogeneous in the sense that The statistical properties of the different subsets charac-

they have the same scaling properties, characterized localtgrized by these different exponertiiscan be quantified by
by a single singularity exponeriity, throughout the entire the functionD(h), whereD(hg) is the fractal dimension of
signal®?~°" Therefore monofractal signals can be indexed bythe subset of the time series characterized by the local Hurst
a singleglobal exponent—the Hurst exponeht=h, (Ref.  exponenth,.53%55759-6Thys, the multifractal approach for
58—which suggests that they aseationaryfrom viewpoint  signals, a concept introduced in the context of multiaffine
of their local scaling properties. On the other hand, multi-functions®>6% has the potential to describe a wide class of
fractal signals, can be decomposed into many subsets-signals that are more complex then those characterized by a
possibly infinitely many—characterized by differeldcal  single fractal dimensioifsuch as classical fLhoise.
Hurst exponents), which quantify the local singular behav- In a recent study, we establish the relevance of the mul-

Beat number
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tifractal formalism for the description of a physiological with a shade of green and red, respectively. The two subsets
signal—the human heartbedtThe motivation for our work  display different temporal structures which can be quantified
is not merely looking for yet another example of multifrac- by different fractal dimensio (h). The healthy signal is
tality, this time in the biological sciences. In fact, if we con- represented by anulticolor plot, reflectingmultifractal be-
sider the neuroautonomic control mechanisms responsibleavior through the variety of values for the local Hurst ex-
for the generation of heartbeats, it is natural to expect thgponents. In contrast, fractional Brownian motita mono-
need for multifractal concepts for their description, since thefractal signa) is essentiallynonochromaticindicating that
heartbeats are a result of the interaction of many physiologithe local Hurst exponerit is the same throughout the signal
cal components operating on different time scales. These inFig. 7(c)].

teractions are nonlinear and self-regulatifigrough feed-

back contro)l, leading to thenonlinear character of the
output signal and to the heterogeneous features of heartbedt MULTIFRACTALITY IN HEARTBEAT DYNAMICS

time series. _ We evaluate the local exponemthrough the modulus of

In contrast, the assumption of heartbeat MONOyye maxima values of the wavelet transform at each point in
fractality—which has been the scope of studies in the field Sgne time series using the wavelet transform modulus maxima
far—is unrealistic because the monofractal hypothesis asnethod®® However, heartbeat time series contain densely
sumes that the scaling properties of the signal are the samcked,nonisolatedsingularities which unavoidably affect
throughout time, and are characterized by the same l0C&lach other in the time-frequency decomposition. Therefore,
Hurst exponent [Fig. 7(c)]. However, inspection of heart- rather than evaluating the distribution of the inherently un-
beat signals shows them to be heterogeneous and suggesigble local singularity exponentas shown in color in Fig.
they might require more exponents for their description.7) e estimate the scaling of an appropriately chosen global
Since the power spectrum and the correlation analy3#\  measure—a partition functiafy,(a), which is defined as the
method can measure onlypne exponent characterizing a sum of theqth powers of the local maxima of the modulus of
given signal, these methods are more appropriate for thghe wavelet transform coefficients at scald=or each scala
study of monofractal signals. Moreover, the power spectrumhese local maxima values are traced along the maxima lines
and the correlation analysis reflect only the linear characteloptained after the wavelet decomposition of the heartbeat
istics, while the heartbeat dynamics exhibits nonlinear propsignal (maxima lines appear in bright/white color in Fig. 5
erties. Thus the multifractal analysis may reveal new infor-As analyzing wavelet we use the third derivative of the
mation on the nature of the nonlinearity encoded in theGaussian function. For small scales, we expect
Fourier phasesgsee Fig. 12 later in this woyk )

The first problem, therefore, is to extract the local value Zq(a)~a™. (6.2)
of h. To this end we use methods derived from waveletFor certain values of], the exponents(q) have familiar
theory® The properties of the wavelet transform make meanings. In particulary(2) is related to the scaling expo-
wavelet methods attractive for the analysis of complex nonnent of the Fourier power spectr&(f)~1/f#, as g=2
stationary time series such as one encounters in physidfogy.+ 7(2). Forpositiveq, Z4(a) reflects the scaling of the large
In particular, wavelets can remove polynomial trends thafluctuations and strong singularities, while for negatiye
could lead box-counting techniques to fail to quantify theZ,(a) reflects the scaling of the small fluctuations and weak
local scaling of the sign&f Additionally, the time-frequency  singularities>>®" Thus, the scaling exponentéq) can reveal
localization properties of the wavelets makes them particudifferent aspects of cardiac dynami@Sig. 8). Monofractal
larly useful for the task of revealing the underlying hierarchysignals display a linear(q) spectrum;7(q)=qH-— 1, where
in the cascade of fluctuatiorifig. 5) that governs the tem- H is the global Hurst exponent. For multifractal signal&y)
poral distribution of the local Hurst exponents. Hence, thes a nonlinear function: 7(q)=qh(q)—1, where h(q)
wavelet transform enables a reliable multifractal anal§is. =dr(q)/dq is not constant.
As the analyzing wavelet, we use derivatives of the Gaussian A previous obstacle to the determination of the multi-
function, which allows us to estimate the singular behaviorfractal spectrum of a time series has been the calculation of
and the corresponding expondnat a given location in the the negative moments. Until the application of the wavelet
time series. The higher the orderof the derivative, the modulus maxima method, it was not possible to estimate
higher the order of the polynomial trends removed and th&q(a) for q<0. We calculate 7(q) for moments q
better the detection of the temporal structure of the locak —5,4,...,0,...,5 and scales=2x1.18, i=0,...,41 from 6 h
scaling exponents in the signal. records obtained from a healthy subject and a subject with

The concept of multifractality is exemplified in Figs. congestive heart failure. In Figs(é and 8b) we display the
7(a) and 71b) for a heartbeat intervals record from a healthy calculated values oZ,(a) for scalesa>8. The top curve
subject. The heterogeneity of the healthy heartbeat is repre&orresponds ta= —5, the middle curvgshown heavy to
sented by the broad range of local Hurst exponbritolors g=0 and the bottom curve tg=5. The exponents(q) are
present and the complex temporal organization of the differobtained from the slope of th&,(a) curves in the region
ent exponents. The middle and bottom panels illustrate th&6<a<700, thus eliminating the influence of any residual
different fractal structure of two subsets of the time seriesmall scale random noise due to electrocardiogram signal
characterized by different local Hurst exponents. The valugre-processing as well as extreme, large-scale fluctuations of
of the local Hurst exponent for each subset is representetthe signal. A monofractal signal would correspond to a
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© Healthy - day
== Healthy — night
+  + Heart Failure

FIG. 8. (Color onling Scaling of the partition functioZ,(a) with scalea
obtained from daytime records consisting=e25 000 beats fofa) a healthy
subject andb) a subject with congestive heart failufe) Multifractal spec-
trum 7(q) for the individual records irfa) and (b).

straight line forr(q), while for a multifractal signat(q) is
nonlinear. Note the clear differences betweendfw curves
for healthy and heart failure recordEig. 8(c)]. The con-
stantly changing curvature of th€q) curves for the healthy
records suggests multifractality. In contrasfg) is almost
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FIG. 9. (Color online (a) Multifractal spectrumr(q) of the group averages

for daytime and nighttime records for 18 healthy subjects and for 12 patients
with congestive heart failure. The results show multifractal behavior for the
healthy group and distinct change in this behavior for the heart failure
group.(b) Fractal dimension® (h) obtained through a Legendre transform
from the group averaged(q) spectra of(a). The shape oD(h) for the
individual records and for the group average is broati£0.25), indicat-

ing multifractal behavior. On the other hanb(h) for the heart failure
group is very narrow £h~0.05), indicating loss of multifractality. The
different form ofD (h) for the heart failure group may reflect perturbation of
the cardiac neuroautonomic control mechanisms associated with this pathol-
ogy. Note that, foq=2, the heartbeat fluctuations of healthy subjects are
characterized byn~0.1, which corresponds ta~1.1 for the interbeat in-
terval series obtained from DFA analysBec. Ill).

linear for the congestive heart failure subject, indicating
monofractality.

We analyze both daytim@2:00 to 18:00 and nighttime
(0:00 to 6:00 heartbeat time series records of healthy sub-
jects, and the daytime records of patients with congestive
heart failure. These data were obtained by Holter monitoring.
Our database includes 18 healthy subjét® female and 5
male, with ages between 20 and 50, average 34.3 yeard
12 congestive heart failure subjed female and 9 male,
with ages between 22 and 71, average 60.8 yaarsinus
rhythm#®
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Next, we obtain the fractal dimensi@n(h). It is related
to 7(q) through a Legendre transform,

dr(q)
dqg

D(h)=q —7(q). (6.2

For all healthy subjects, we find thafq) is a nonlinear
function[Figs. §c) and 9a)], which indicates that the heart
rate of healthy humans is a multifractal signal. Figufb)9
shows that for healthy subject3(h) has nonzero values for
a broad range of local Hurst exponehtsThe multifractality
of healthy heartbeat dynamics cannot be explained by activ:
ity, as we analyze data from subjects during nocturnal hours
Furthermore, this multifractal behavior cannot be attributed
to sleep-stage transitions, as we find multifractal features
during daytime hours as wéf. The range of scaling
exponents—8&.h<0.3—with nonzero fractal dimension
D(h), suggests that the fluctuations in the healthy heartbea
dynamics exhibit anticorrelated behavigr= 3 corresponds
to uncorrelated behavior whila>3 corresponds to corre-
lated behavior

In contrast, we find that heart rate data from subjects
with a pathological condition—congestive heart failure—
show a cleatoss of multifractality{ Figs. 9a) and 9b)]. For
the heart failure subjects(q) is close to linear an®(h) is
nonzero only over a very narrow range of expondnisdi-
cating monofractal behavidFig. 9).

Our results show that, for healthy subjects, local Hurst
exponents in the range 0.€h<0.17 are associated with
fractal dimensions close to one. This means that the subsel
characterized by these local exponents are statistically domi
nant. On the other hand, for the heart failure subjects, we
find that the statistically dominant exponents are confined ta
a narrow range of local Hurst exponents centeredhat
~0.22. These results suggest that for heart failure the fluceic. 10. (Color onling Panels obtained from healthy individuals illustrating
tuations are less anticorrelated than for healthy dynamicBow the local Hurst exponertt (vertical color bars changes with time
since the dominant scaling exponehtare closer t(%. Thus, (x-axig). Each papel represent 6 hrecord. A broad range of colors indi-

. : . cates broad multifractal spectrum.
our findings support previous reports of long-range anticor-
relations in healthy heartbeat fluctuatiqsee caption to Fig.

9).23
. VII. MULTIFRACTALITY AND NONLINEARITY
We present color panels with the local Hulnséxponent
for six healthy individuals(Fig. 10 and six subjects with The multifractality of heart beat time series also enables

congestive heart failur@=ig. 11). Each panel represen&a 6 h  us to quantify the greater complexity of the healthy dynamics
long record. The color code for these panels is the followingcompared to pathological conditions. Power spectrum and
with increasing value oh, the spectrum goes from red to detrended fluctuation analysis define the complexity of heart
green to blue. A wider range of colors indicates a higherbeat dynamics through its scale-free behavior, identifying a
degree of multifractality. For this reason, records fromsinglescaling exponent as an index of healthy or pathologic
healthy individuals should be more polychromatic. On thebehavior. Hence, the power spectrum is not able to quantify
other hand, records from heart failure patients should béhe greater level of complexity of the healthy dynamics, re-
more monochromati¢with a single color predominating flected in the heterogeneity of the signal. On the other hand,
indicating loss of multifractality. In addition, the color spec- the multifractal analysis reveals this new level of complexity
trum for the healthy individuals is shifted to the red and forby the broad range of exponents necessary to characterize
the heart failure patients is shifted to the blue. This is inthe healthy dynamic&ig. 9). Moreover, the change in shape
agreement with the results in Fig. 9 where the peak of thef the D(h) curve for the heart failure group may provide
multifractal spectrun (h) is centered at smaller valuestof insights into the alteration of the cardiac control mechanisms
for the healthy group and at larger valueshofor the heart due to this pathology.

failure group. These findings may have a potential for  To further study the complexity of the healthy dynamics,
diagnosig’ we perform two tests with surrogate time series. First, we
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FIG. 12. (Color (a) The fractal dimension® (h) for a 6 hdaytime record
of a healthy subject. After reshuffling and integrating the increments in this
FIG. 11. (Color Panels obtained from subjects with congestive heart failureinterbeat interval time series, so that all correlations are lost but the distri-
illustrating how the local Hurst exponehtvertical color barschanges with  bution is preserved, we obtain monofractal behavior—a very narrow point-
time (x-axis). Each panel represena 6 hrecord. An almost monochromatic  |ike spectrum centered at=H= 1 Such behavior corresponds to a simple
appearance indicates narrow multifractal spectrum, i.e., loss of multirandom walk. A different test, in which the fiscaling of the heart beat
fractality. signal is preserved but the Fourier phases are randortiieechonlinearities

are eliminateflleads again to a monofractal spectrum centerel~a®.07,

. . . . since the linear correlations were preserved. These tests indicate that the
generate a surrogate time series by shuffling the_ interbe@bserved multiractality is related to nonlinear features of the healthy heart
interval increments of a record from a healthy subject. Theeat dynamics rather than to the ordering or the distribution of the interbeat
new signal preserves the distribution of interbeat interval inintervals in the time seriesb) The fractal dimension®(h) for a 6 h
crements but destroys the long-range correlations amongfytiime record of a heart failure subject. The narrow multifractal spectrum

. . . . . Ifdicates loss of multifractal complexity and reduction of nonlinearities with
them. Hence, the signal is a simple random walk, which is,athology.
characterized by a single Hurst exponéht 3 and exhibits
monofractal behaviofFig. 12a)]. Second, we generate a
surrogate time series by performing a Fourier transform on ¢éhe healthy heartbeat time series contains important phase
record from a healthy subject, preserving the amplitudes oforrelations canceled in the surrogate signal by the random-
the Fourier transform but randomizing the phases, and theization of the Fourier phases, and that these correlations are
performing an inverse Fourier transform. This procedurenveaker in heart failure subjects. Furthermore, the tests indi-
eliminates nonlinearities, preserving only the linear featuregsate that the observed multifractality is related to nonlinear
of the original time series. The new surrogate signal has th&atures of the healthy heartbeat dynamics. A number of re-
same1l/f behavior in the power spectrum as the original cent studies have tested for nonlinear and deterministic prop-
heart beat time series; however, it exhibits monofractal beerties in recordings of interbeat intervds41°0ur results
havior[Fig. 12a)]. We repeat this test on a record of a heartsuggest an explicit relation between the nonlinear features
failure subject. In this case, we find a smaller change in thérepresented by the Fourier phase interachi@ml the mul-
multifractal spectrun{Fig. 12b)]. The results suggest that tifractality of healthy cardiac dynamid§ig. 12.
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VIIl. SUMMARY AND OPEN QUESTIONS control of heart rate and other processes under neuroauto-
nomic regulatiort®3371-73
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