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Extremum Statistics in Scale-Free Network Models
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We investigate the statistics of the most connected node in scale-free networks. For a scale-free
network model with homogeneous nodes, we show by means of extensive simulations that the
exponential truncation, due to the finite size of the network, of the degree distribution governs the
scaling of the extreme values and that the distribution of maxima follows the Gumbel statistics. For a
scale-free network model with heterogeneous nodes, we show that scaling no longer holds and that the
truncation of the degree distribution no longer controls the maxima distribution.
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Unlike the case of iid random variables, little is known
when correlations are present among the variables ki

not equally distributed—hence, there is not an a priori
justification to expect that one of the two universality
The statistics of extrema is a classical subject of great
interest in mathematics and physics [1]. In physics, ex-
treme events have been studied in a number of fields,
including self-organized fluctuations and critical phe-
nomena [2], material fracture [3], disordered systems at
low temperatures [4], and turbulence [5]. Knowledge of
extreme event statistics is also of fundamental impor-
tance to predict and estimate risk in a variety of natural
and man-made phenomena such as earthquakes, changes
in climate conditions, floods [6], and large movements in
financial markets [7]. A new field where extreme statistics
is of interest is complex networks [8]. For one particular
class of complex networks [9]—scale-free networks
[10,11]—it is well known that the most connected nodes
strongly influence the dynamics of the system, playing a
fundamental role in many different phenomena such as
Internet response to attacks [12], spreading of epidemics
[13], or propagation of email virus [14]. Surprisingly, so
far there has been no attempt to characterize the distri-
bution of extreme connectivities in scale-free networks.

An important result in extreme statistics is that the
distributions of maxima for independent identically dis-
tributed (iid) random variables fall onto a small number
of universality classes [1]. Let C � fk1; k2; . . . ; kSg be a set
of iid variables drawn with probability density function
p�k�. The distribution ��K� of the maximum K in the set
C is dictated by the asymptotic behavior of the tail of p�k�
[1]. Specifically, ��K� converges to the Gumbel distribu-
tion,

��K� � a exp��u� e�u�; (1)

where u � a�K � b�, when p�k� decays faster than a
power law; and to the Frechet distribution,

��K� � �K����1� exp��K���; (2)

when p�k� decays as k����1� [15,16].
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[4,17]. Even though the universality classes of uncorre-
lated and correlated variables may not necessarily be the
same, correlated systems have been generally studied
under the framework of iid extreme statistics [18]. In the
case of scale-free networks, which we consider in this
Letter, correlations are present in the degrees ki (i.e., the
number of links) of the nodes [19].

To investigate the extreme statistics in scale-free net-
works, we consider here the fitness model of Ref. [20].
This model is a generalization of the scale-free model of
Ref. [10], in which nodes have heterogeneous fitnesses
f�i; i � 1; . . . ; Sg. The fitness �i models an inherent qual-
ity of the node i that ‘‘weighs’’ its attractiveness to new
links. In this model, the network starts with s0 nodes,
each with s0 � 1 links. At time t, a new node is added to
the network and establishes s0 � 1 new links. A new link
is established with a node i, from the set of the t� 1� s0
existing nodes, with a probability proportional to the
node degree ki and fitness �i,

	i �
ki�iP
kj�j

: (3)

This mechanism, typically denoted ‘‘preferential attach-
ment,’’ drives the network to a degree distribution that
decays in the tail as a power law [10]. In the homogene-
ous case, �i � 1 for all i, one recovers the original model
of Ref. [10] and generates a network with cumula-
tive degree distribution that decays as P�k� 	 k�2 [10].
In the case where the fitnesses �i are drawn from a uni-
form distribution �i�
0; 1�, the network has a cumulative
degree distribution of the form P�k� 	 k��= log�k�, with
� � 1:225 [20].

Here, we demonstrate that for the homogeneous case—
i.e., all �i are equal—the distribution of maxima obeys
Gumbel statistics. This is a surprising result for two
reasons: (i) the degrees ki are not iid variables and are
 2002 The American Physical Society 268703-1
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FIG. 1. (a) Log-log plot of the cumulative degree distribution
(thin lines) and distribution of maximum degree (thick lines)
for the homogeneous case [10]. The cumulative distribution
decays as a power law with an exponent � � 2, followed by an
exponential truncation. Using the rescaling relation K0 �
S�1=�K, all curves collapse after the onset of the exponential
truncation [21,22]. The distribution of maxima displays the
same scaling of the degree distribution. It can also be seen that
the maxima are mainly drawn from the exponential region of
the degree distribution. (b) Semilog plot of the distribution of
maximum degree. For comparison, we also show the best fits to
the data of the Gumbel statistics with u � �2:1�K0 � 1:6�
(dotted line), and Frechet distribution with � � 2 (dashed
line). The maximum statistics agree well with the Gumbel
distribution for K0 < 5. The exponential truncation of the
degree distribution determines the form of the distribution of
maximum degree.
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classes (1) or (2) will hold—and (ii) the distribution P�k�
decays as a power law—hence, one would more likely
expect to find Frechet statistics. For the case of nodes
with heterogeneous fitness, we find that the distribution of
maximum, for finite network sizes, is not consistent with
either of the universality classes represented by Eqs. (1)
and (2). However, our results suggest that the distribution
of maxima converges to the Frechet distribution in the
thermodynamic limit.

First we consider the case �i � 1 for all i. The distri-
bution of the maximum degree K is nontrivial because
(i) the degrees ki display a constraint on the total number
of links and (ii) the variables ki are not identically
distributed. Indeed, recent studies have shown that
each node has a different probability distribution for its
degree pi�ki� obeying an exponential form with a char-
acteristic scale that depends on the square root of the node
index i [21,22].

In Fig. 1(a) we show the cumulative degree distribu-
tion, P�k� �

P
k0>k p�k

0�, for different network sizes S and
�i � 1 (homogeneous case). These results have been ob-
tained numerically through iteration of the rate equation
proposed in Ref. [22]. As expected, the curves display a
power-law decay, P�k� / k��, with � � 2, followed by
an exponential truncation. The data collapse is obtained
by scaling all curves according to [21,22]

SP�k� /
�

k

S1=�

�
��

: (4)

Also shown in Fig. 1(a) are the distributions of maximum
degree for different network sizes S and averaged over 105

network realizations [23]. After scaling with the same
exponent that governs the degree distribution, K0 �
S�1=�K, we observe that the maxima overlap the expo-
nentially decaying region of the degree distribution. As a
consequence, the scaling of the degree distribution’s trun-
cation controls the extremum statistics. Figure 1(b) shows
the distribution of maximum degree —scaled in the fash-
ion of Fig. 1(a) — compared with the best fittings to the
data of the Frechet and Gumbel distributions. It is ap-
parent that the Gumbel distribution describes the maxi-
mum statistics quite well for K0 < 5 [24], suggesting that
the truncation of the degree distribution dictates the ex-
ponential decay of the distribution of maxima.

The surprising result that the statistics of maxima for
homogeneous scale-free networks is described by the
Gumbel distribution has its origin in the non-iid character
of the degrees in the network. Indeed, one would have
expected Frechet statistics to hold in this case due to the
power-law form of the degree distribution. However, the
constraint in the total number of links limits the maxi-
mum degree of a node and the maximum distribution
assumes the exponentially decaying Gumbel form [25].

Next, we consider the case of a growing network with
nodes having a uniform distribution of fitnesses. In this
268703-2
case, fitter nodes will enter the network and compete for
new links with the less fit nodes in the network, even-
tually becoming the most connected nodes. This is clearly
shown in Fig. 2, where we plot the fitness distribution of
the most connected node for different network sizes. As
the network grows, the distribution converges logarithmi-
cally to a delta function at � � 1. In the thermodynamic
limit, the fittest node, with fitness one, becomes the most
connected. This is to be expected since the growth of the
degree of a node increases over time as a power law with
an exponent proportional to its fitness [20].

In Fig. 3(a) we compare the degree distribution and
the maximum statistics for the heterogeneous case [26].
The cumulative degree distribution follows the expected
scaling and displays, as in the homogeneous case, an
268703-2
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FIG. 3. (a) Log-log plot of the cumulative degree distribution
(thin lines) and distribution of maximum (thick lines) for the
model with uniform fitness distribution [20]. In this case, the
distribution decay as P�k� 	 k��= logk, with � � 1:255 [20].
Note that this result is different from the results of Fig. 2(a) in
Ref. [20], which shows a plateau instead of an exponential
truncation. Again, we use the rescaling relation K0 � S�1=�K
to determine the onset of the exponential truncation for large
values of k. This scaling fails to collapse the distribution of
maximum degree. In this case the maxima are mostly drawn
from the power-law part of the degree distribution. (b) Data
collapse for the maximum degree distribution using the rescal-
ing relation K00 � S�1=� ln�S�K. The thin dotted and dashed
lines correspond to the best fit to the data of the Gumbel [with
u � �0:7�K00 � 2�] and Frechet (with � � 1:255) distribu-
tions, respectively. For this case the curves do not collapse
well. The distributions became broader as the network grows,
appearing to converge to the Frechet distribution as S increases.
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FIG. 2. Fitness distribution of the node with the maximum
degree. As expected, the node with the largest fitness even-
tually becomes the most connected during the growth of the
network. The inset shows the collapse of the data obtained
under the transformation � � �1� �max� logS, implying that
the typical maxima �typ converges to one as 1= logS.
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exponential truncation that scales as S1=�, with � �
1:255. However, in this case the scaling of the exponential
truncation S1=� does not lead to the data collapse of the
distributions of maximum degree; cf. Fig. 3(a). Indeed, as
the network grows, the distribution of maxima gradually
shifts into the region of the degree distribution before the
exponential truncation.

This fact is explained by the fact that the larger values
of K are due to nodes with � very close to 1, while the
typical maxima Ktyp correspond to nodes with smaller
fitnesses. The results of Fig. 2 indicate that the fitness of
the typical maxima, �typ, scales as 1� 1= lnS. Since the
degree of a site i grows as S�i=� [20], we obtain

d lnKtyp

d lnS
�

�typ

�
/

1

�

�
1�

1

lnS

�
; (5)

where Ktyp is the typical degree of the maxima. The
integration of Eq. (5) results in

Ktyp 	

�
S
lnS

�
1=�

: (6)

We test this result in Fig. 3(b), where we plot the distri-
butions of maximum degree for different network sizes
scaled according to (6). The scaling succeeds in collaps-
ing the peaks of the distributions. The scaling also shows
that ��K� does not follow either of the two classical
forms, but we note that the curves approach the Frechet
distribution as the system size increases. This is consistent
with the results shown in Fig. 3(a). Since as the network
grows the distribution of maxima shifts away from the
region of the truncation of the degree distribution, we
expect that the power-law region of the degree distribu-
tion will dictate the statistics of the maxima, which,
according to Eq. (6), will converge logarithmically to
the Frechet statistics.

In order to further test the effect of new, fitter, nodes
becoming the new maxima, we consider an additional
network growth model in which the nodes have uniformly
268703-3
distributed fitnesses, but the two initial nodes in the
network (i � 1 and 2) have � � 1. In this case, we expect
that one of the two initial nodes will be the most
connected; hence the distribution of �max is a delta
function at one. We calculate the cumulative degree dis-
tribution for this case and find that the distribution dis-
plays a power-law decay followed by an exponential
truncation [27]. Moreover, in this case, the typical max-
ima fall in the exponentially decaying region of the
degree distribution, and the maxima scale as S1=�, as
the truncation of the degree distribution.

The results for this test case further suggest that in the
case of heterogeneous fitness it is the slow, progressive
268703-3
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entry into the system of nodes with larger fitnesses—
which eventually overcome older nodes as the maxima—
that is the reason for the lack of scaling for the distribu-
tion of maxima and for the fact the typical maxima is
drawn from the power-law decaying region of the degree
distribution.

The major finding of this study is the possibility to
describe in a parsimonious way the statistics of the maxi-
mum degree for growing networks. This is of importance
due to the role that the largest degree has in scale-free
networks [11]. For the case of homogeneous nodes—i.e.,
nodes with identical fitnesses—we find that the distribu-
tion of maxima follows Gumbel statistics with parame-
ters related to the exponent � characterizing the degree
distribution. We explain this finding by the exponential
truncation of P�k� due to the finite size of the network.
In contrast, for scale-free models with heterogeneous
nodes having fitnesses drawn from a uniform distribution,
we do not find scaling of the distribution of maxima.
Nonetheless, our results suggest that the asymptotic dis-
tribution of maxima approaches the Frechet statistics as
the network size increases, even though P�k� is exponen-
tially truncated due to the network’s finite size. We ex-
plain this puzzling fact in terms of the progressive entry
of nodes with larger fitness which over time will establish
more links than nodes with lower fitness that entered the
system earlier.
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