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Abstract
This paper discusses some of the similarities between work being done by
economists and by computational physicists seeking to contribute to economics.
We also mention some of the differences in the approaches taken and seek
to justify these different approaches by developing the argument that by
approaching the same problem from different points of view, new results might
emerge. In particular, we review two such new results. Specifically, we discuss
the two newly discovered scaling results that appear to be ‘universal’, in the
sense that they hold for widely different economies as well as for different time
periods: (i) the fluctuation of price changes of any stock market is characterized
by a probability density function, which is a simple power law with exponent
−4 extending over 102 standard deviations (a factor of 108 on the y-axis);
this result is analogous to the Gutenberg–Richter power law describing the
histogram of earthquakes of a given strength; (ii) for a wide range of economic
organizations, the histogram that shows how size of organization is inversely
correlated to fluctuations in size with an exponent ≈0.2. Neither of these two
new empirical laws has a firm theoretical foundation. We also discuss results
that are reminiscent of phase transitions in spin systems, where the divergent
behaviour of the response function at the critical point (zero magnetic field)
leads to large fluctuations. We discuss a curious ‘symmetry breaking’ for values
of ! above a certain threshold value !c; here ! is defined to be the local first
moment of the probability distribution of demand "—the difference between
the number of shares traded in buyer-initiated and seller-initiated trades. This
feature is qualitatively identical to the behaviour of the probability density of
the magnetization for fixed values of the inverse temperature.
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1. Introduction

One prevalent paradigm in economics is to marry finance with mathematics, with the fruit of this
marriage the development of models. In physics, we also develop and make use of models or, as
they are sometimes called, ‘artificial worlds’, but many physicists are fundamentally empirical
in their approach to science—indeed, some physicists never make reference to models at all
(other than in classroom teaching situations). This empirical approach has led to advances
when theory has grown out of experiment. One such example is the understanding of phase
transitions and critical phenomena [1]. Might this ‘empirics first’ physics paradigm influence
the way physicists approach economics? Our group’s approach to economic questions has been
to follow the paradigm of critical phenomena, which also studies complex systems comprised
of many interacting subunits, i.e., to first examine the empirical facts as thoroughly as possible
before we begin to construct models.

2. Fluctuations in finance

As do economists, physicists view the economy as a collection of interacting units. This
collection is complex; everything depends on everything else. The interesting problem is: how
does everything depend on everything else? Physicists are looking for robust empirical laws
that will describe—and theories that will help one understand—this complex interaction [2–8].

To a physicist, the most interesting thing about an economic time series—e.g., the S&P 500
stock average index—is that it is dominated by fluctuations. If we make a curve of the values
of the S&P 500 over a 35-year period, we see a fluctuating signal. Statistical physicists
are particularly interested in fluctuating signals. The nature of this fluctuation immediately
suggests to a physicist a model that was developed 100 years ago by Bachelier: the biased
random walk [9].

A one-dimensional random walk is a drunk with a coin and a metronome. At each beat
of the metronome, the coin is flipped—heads means one step to the right, tails one step to the
left. If we look at our S&P 500 plot placed alongside a graph of a one-dimensional biased
random walk—it is biased because it uses a ‘biased coin’ that has a slight tendency to go up
rather than down—we physicists see a reasonable visual similarity. In fact, many economic
pricing models—e.g., Black and Scholes—use this biased random walk.

Still there are certain points in the S&P 500 plot—such as 19 October 1987 (‘Black
Monday’), or the 15% drop over the week following the events of 11 September 2001—that
are not mirrored anywhere in the biased random-walk model. Nowhere do we see a drop
anywhere near the 30% drop of Black Monday. This could not occur in a biased random
walk—the probability that a walk will move two steps in the same direction is p2, three steps
is p3, and so on—so the probability of many steps in the same direction is exponentially low,
and it is virtually impossible.

Then how do we quantify these S&P 500 fluctuations? We begin by graphing the values
of the fluctuations as a function of time. We place the plot of the empirical data next to
the predictions of Bachelier’s model. The fluctuations in the model are normalized by one
standard deviation. Note that the biased random walk has a probability density function (PDF)
that is a Gaussian, so the probability of having more than five standard deviations is essentially
zero—you can see that a line drawn at five standard deviations is outside the range of the
fluctuations.

If we normalize the empirical data we see a difference. A line drawn at five standard
deviations is not outside the range of the fluctuations—there are many ‘shocks’ that exceed
five standard deviations. A bar placed on the positive side at five standard deviations also
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has 30 or 40 hits—fluctuations that equal or exceed five standard deviations in the positive
direction. Some, such as Black Monday, are more than 34 standard deviations. The exponential
of (−1/2)(34)2 is approximately 10−267/2.

Because big economic shocks affect the economy around the world (‘everything depends
on everything else’), the possibility of an economic ‘earthquake’ is one that we must take
seriously. Big changes in stocks affect not only people with large amounts, but also those on
the margins of society. One person’s portfolio collapse is another’s physical starvation; e.g.,
literal starvation in some areas was one result of the recent Indonesian currency collapse.

Another example is the recent Merriwether LTCM (long-term capital management)
collapse, caused in part by the use of models that do not take into account these catastrophic rare
events. Thus there are many reasons that we physicists might be interested in understanding
economic fluctuations.

3. One possible conceptual framework

We shall see that our analysis of empirical data shows that those catastrophic rare events are
a part of the overall picture: they are not simply inexplicable disasters beyond any possible
understanding. Although this sounds as though we physicists think that we can contribute
to economics, it is possible that the converse may be even more true. If we join economists
in studying economics, we may stumble onto some ideas that will help us back in our more
traditional research areas of physics. An example is turbulence. If one stirs a bucket of water,
energy is added to the system on a big scale. This energy then dissipates over progressively
smaller scales. This is an unsolved physics problem; many empirical facts can be stated, but
little can be said about understanding it [10–12].

One could hypothesize that the economy is perhaps analogous to this example of
turbulence. One can add information on a big scale to an economic system—e.g., the
news of who wins a presidential election—and that information is dissipated on smaller and
smaller scales. The way that you handle the ‘turbulence’ associated with this dissipation of
information in a financial market may help us understand how to approach turbulence in our
physics research. As attractive as this analogy might appear intuitively, it is not so accurate
quantitatively, since the actual laws of turbulence are not at all the same as the empirical laws
of economics [11, 12], despite early claims to the contrary [10].

Much of physics comes down to solving a differential equation, i.e., most functions in
physics have some kind of characteristic scale. Once you have determined the scale, you
can express the function in an exponential form—which has the wonderful property that the
derivative of the function is also an exponential. In particular, the parameter r sets the scale
of the problem. If r is positive, the function grows—and tells you the doubling time for
the quantity of interest. Solutions to this look like Gaussians, and Gaussians are wonderful,
tractable functions.

Such systems with scales describe almost everything in nature, including disordered things.
Even raindrops on a sidewalk almost always have a characteristic scale. (If one ‘zooms in’ or
‘zoom out’, one can find the scale.) But there is a set of systems in nature that lack a scale.
Systems in this set are described by power laws.

The framework for our approach to systems with many interacting subunits is something
that is usually called ‘scale invariance’. These systems vary greatly from systems that do have
scales [1, 13].

We are all familiar with algebraic equations such as

x2 = 4, (1a)
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and we know the solution is a number, ±2. Most of us are also familiar with functional
equations, which are statements not about relations between numbers, but about the functional
form of a function f (x). Algebraic equations have solutions that are numbers, but functional
equations have solutions that are functional forms. Power-law functions are the solutions of
certain functional equations of the form

f (λx) = λpf (x). (1b)

In a functional equation, the converse also holds, i.e., every function that is of this power-
law form also obeys this functional equation. This applies to a large number of contexts—in
particular, to physical systems that have been tuned to be near critical points. An example is
a binary mixture of two fluids in which the temperature has been tuned to be a special value
called the critical temperature. At that temperature, there occur fluctuations in density in the
binary mixture that extend over all length scales up to and including the wavelength of light.
If you shine a flashlight on a tube of the binary mixture, you see an eerie glow—because the
density fluctuations are so big in spatial extent, they become comparable to the wavelength of
the light that is interacting with them. When that occurs, you see something that is visible—
‘critical opalescence’. The same conceptual framework as describes this system appears to be
able to describe economic systems [14].

4. Quantifying finance fluctuations

One topic we physicists are interested in is symmetry. An example of traditional symmetry is
sodium chloride. One can displace the lattice an amount equal to exactly two lattice constants
and the configuration will remain the same. One can rotate it 90◦, or invert it, and the configu-
ration will remain the same. Not only are these properties fascinating to mathematicians, they
are also very relevant to solid-state physics. This simple symmetry and the mathematics and
physics that are built on it have led to extremely useful inventions, e.g., the transistor.

The scale-invariance symmetry involved here is just as much a symmetry as the
translational invariance symmetry in sodium chloride. We do not know how useful this scale-
invariance symmetry will ultimately prove to be. Over the past 30 years physicists have used the
theme of scale-invariance symmetry to understand systems near their critical points. Previous
to this period of time, this class of problems was one nobody could solve: there were many,
many length scales, not just one. The length scales could run from one nearest-neighbour
spacing out to approximately 5000 (approximately the wavelength of light). The elements
that make up this system are molecules that interact only over a short range—almost entirely
with nearest neighbours. But this nearest-neighbour interaction propagates a small amount of
torque through the system of nearest-neighbour interactions, so the entire system is somewhat
affected.

This is beginning to sound like economics, in which ‘everything affects everything else’,
and in economics, the first thing a physicist would do is look for the correlations. If we look
at a graph of the autocorrelation function, we see a measure of the quantity G, which is a
price change over some time horizon $t . If we look at how G is now correlated with G at a
time τ later, we measure that quantity as a function of τ , and as the size of τ increases, the
correlation decreases. It is remarkable that this decrease happens in a regular fashion. How do
we interpret this decrease? If we put the autocorrelation function in logarithmic units and the
time lag in linear units, we see that the data fall on an approximate straight line. This means
that the function is decaying exponentially, which means it does indeed have a characteristic
scale [15–17]. So the autocorrelation function is not scale invariant. This differs from systems
near their critical points in which the autocorrelation functions are scale invariant.
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5. Statistical features of price fluctuations

The decay time in this economic example is short (4 min), so one cannot easily ‘make money’
on these correlations [15,16]. A little less well known is the measure of the volatility [16,17].
One way to quantify volatility is to replace G (the price change) with the absolute value of G.
The data now are not at all linear on log–linear paper, but they are linear on log–log paper. And,
of course, a power law y = xp is linear on log–log paper, because log y = p log x. The slope
of the log–log plot p is the value of the exponent. These exponents turn out to be fundamental
quantities. In this case, p = −0.3. The data are straight from about 200 min out to about
105 min—a range of almost 1000. With the data graphed, one can see the approximate region
in which the data are straight—the data are not straight over all regions. Qualitatively, we have
known for a long time that there are long-range correlations in the volatility, e.g., volatility
‘clustering’ and ‘persistence’, but this graph helps quantify this known empirical fact.

If we cannot find an ordinary correlation near a critical point, we must try something else.
For example, we might simply dump all of our data ‘on the floor’. After we do that, the data
no longer have time ordering nor do they have long- or short-range power-law correlations
in the volatility of the autocorrelation function itself. Now we pick the data points up off
the floor and make a histogram. Mandelbrot did this in 1963 with 1000 data points—a tiny
number by today’s standards—for cotton-price fluctuations [14]. He concluded that those data
were consistent with a Lévy distribution, i.e., a power-law distribution in that histogram—a
so-called ‘fat tail’.

In 1995, Mantegna and Stanley decided to test this result using data with $t shorter than
for the daily data available in 1963 [15]. We used approximately one million data points: three
orders of magnitude greater than Mandelbrot’s data set. Instead of Mandelbrot’s daily returns
on cotton prices, we had returns approximately every 15 s on the S&P 500 index. We found
that on a log–linear plot (i) the histogram of the G data points for the S&P 500 clearly is not a
Bachelier/Black–Scholes Gaussian, and (ii) although the centre of the histogram agrees fairly
well with Mandelbrot’s Lévy distribution, it begins to disagree after a few standard deviations.
This disagreement led us to develop a class of mathematical processes called truncated Lévy
distributions—which has attracted the attention of a number of mathematicians, who have
carried this concept far further than we could [18–23].

What about ‘universality’, the notion in statistical physics that many laws seem to be
remarkably independent of details? A physics example is that dramatically different materials
behave exactly the same near their respective critical points. Binary mixtures, binary alloys,
ferromagnets, even biological systems that involve switching, all behave the same way. An
analogue of this universality appears in economics. For example, Skjeltorp [24] did a study that
utilized the Mantegna approach. Instead of 1500 000 points from the S&P 500 (15 s intervals
spread over six years), Skjeltorp did a parallel study for the Norwegian stock exchange and
got almost exactly the same result.

We assumed that the reason we saw the truncated Lévy distribution while Mandelbrot
did not was because we had more data—by three orders of magnitude. Gopikrishnan et al
recently acquired a data set three orders of magnitude larger still (of order 109)—one that
records every transaction for every stock. They found that when their data were graphed on
log–log paper, the result was linearity [25–28]. This is the log of the cumulative distribution,
the same quantity Mandelbrot plotted for cotton. But where Mandelbrot’s straight line had
a slope of about 1.7 (well inside the Lévy regime, which stops at slope 2.0), Gopikrishnan’s
straight line has a slope of ≈3.0 (far outside the limit for a Lévy distribution). The fact that
these data are approximately linear over two orders of magnitude means that fluctuations that
are as much as 100 standard deviations are still conforming to the same law as describes
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the smaller fluctuations. This is reminiscent of the Gutenberg–Richter law that describes
earthquakes [29–31]. Thus it would seem that these very rare events, which are conventionally
treated as totally unexpected and unexplainable, have a precise probability describable by the
same law as describes much more common events. These rare events occur with a frequency
eight orders of magnitude less than the common, everyday event.

This means that Mandelbrot’s results for cotton (103 points) are at total odds with
Gopikrishnan’s results for the S&P 500 (109 points). Why this difference? Is it simply because
Mandelbrot did not have enough data to draw reliable conclusions? Or do commodities
intrinsically have fatter tails? In recent work with data from British Petroleum, it appears
that commodity data may have a slightly smaller slope—consistent with the possibility that
perhaps there is not one universal behaviour for everything, but at least two separate universal
behaviours—one for commodities and one for equities [32]. This smaller slope is still above
2, so the commodity data are not in the Lévy regime (even current data on cotton display a
slope above 2).

6. Some similarities with ‘diffusion in a tsunami wave’

Over this past year, we and our collaborators have been trying to understand these exponents
using procedures similar to those used in critical phenomena, e.g., we relate one exponent to
another and call the relation a scaling law, or we derive some microscopic model.

In particular, there appears to be an intriguing analogue not with the classic diffusion
process studied in 1900 by Bachelier [9], but rather with a generalization called anomalous
diffusion. It is plausible that classical diffusion does not describe all random motion. The
Brownian motion seen in the behaviour of a grain of pollen in relatively calm water becomes
something quite different if the grain of pollen is in a tsunami wave. The histograms would
certainly be perturbed by a tsunami. A tsunami is an apt verbal metaphor for such economic
‘earthquakes’ as the Merriwether disaster, so why not explore the stock market as an example
of anomalous diffusion?

In one-dimensional classic diffusion, a particle moves at constant velocity until it collides
with something. One calculates, e.g., the end position of the particle, and (of course) finds a
Gaussian. Within a fixed time interval $t , one might calculate a histogram for the number of
collisions p(N), and also find a Gaussian. And if one calculates a histogram of the variance
W 2, one also finds a Gaussian. The fact that these are relatively narrow Gaussians means that
there is a characteristic value, i.e., the width of that Gaussian, and that this is the basis for
classical diffusion theory.

The quantity in the stock market corresponding to the displacement x is the price. At
each transaction there is a probability that the price will change, and after a given time horizon
there is a total change G. We have seen the histogram of G-values—the cumulative obeyed
an inverse cubic law, and therefore the PDF, by differentiation, obeys an inverse quartic law.

What about these histograms? Apparently nobody had calculated these previously.
Plerou et al set about using the same data analysed previously for G to calculate the histograms
of N and W 2. They also found power laws—not Gaussians, as in classic diffusion. That means
there is no characteristic scale for the anomalous diffusion case (there is a characteristic scale
for the classic diffusion case) and for an obvious reason. If you are diffusing around in a
medium—such as the ‘economic universe’ that we live in—in which the medium itself is
changing, then the laws of diffusion change and, in particular, they adopt this scale-free form.
Further, the exponents that describe p(N) and p(W 2) appear [33, 34] to be the analogues of
exponents in critical phenomena in the sense that they seem to be related to one another in
interesting ways.
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7. Some similarities with critical point phenomena

Stock prices respond to fluctuations in demand, just as the magnetization of an interacting spin
system responds to fluctuations in the magnetic field. Periods with large number of market
participants buying the stock imply mainly positive changes in price, analogous to a magnetic
field causing spins in a magnet to align. Recently, Plerou et al [36] addressed the question of
how stock prices respond to changes in demand. They quantified the relations between price
change G over a time interval $t and two different measures of demand fluctuations: (a) &,
defined as the difference between the number of buyer-initiated and seller-initiated trades, and
(b) ", defined as the difference in number of shares traded in buyer- and seller-initiated trades.
They find that the conditional expectations 〈G〉& and 〈G〉" of price change for a given & or "

are both concave. They find that large price fluctuations occur when demand is very small—a
fact which is reminiscent of large fluctuations that occur at critical points in spin systems, where
the divergent nature of the response function leads to large fluctuations. Their findings are
reminiscent of phase transitions in spin systems, where the divergent behaviour of the response
function at the critical point (zero magnetic field) leads to large fluctuations [1]. Further, Plerou
et al [37] find a curious ‘symmetry breaking’ for values of ! above a certain threshold value
!c; here ! is defined to be the local first moment of the probability distribution of demand
", the difference between the number of shares traded in buyer-initiated and seller-initiated
trades. This feature is qualitatively identical to the behaviour of the probability density of the
magnetization for fixed values of the inverse temperature.

8. Cross-correlations in price fluctuations of different stocks

We know that a stock price does not vary in isolation from other stock prices, but that stock
prices are correlated. This fact is not surprising because we know that ‘in economics everything
depends on everything else’. How do we quantify these cross-correlations of one stock with
another? If we take the G-values of four companies out of the 1000 that we have studied—
corresponding to the shrinking or growing of each of these four companies in, say, a 30 min
interval. How does the behaviour of these four companies during that half-hour interval affect
your response to their price activity? If two of the companies were Pepsi and Coke, there
would probably be some correlation in their behaviours.

In order to quantify these cross-correlations, we begin by calculating a cross-correlation
matrix. If we have 1000 firms, we have a 1000×1000 matrix C, each element Cij of which is the
correlation of firm i with firm j . This large number of elements (one million) does not frighten a
physicist with a computer. Eugene Wigner applied random-matrix theory 50 years ago to inter-
pret the complex spectrum of energy levels in nuclear physics [35,38–47,49]. We do exactly the
same thing, and apply random-matrix theory to the matrix C. We find that certain eigenvalues
of that 1000×1000 matrix deviate from the predictions of random-matrix theory, which has not
eigenvalues greater than an upper bound of ≈2.0. Furthermore, the contents of the eigenvectors
corresponding to those eigenvalues correspond to well-defined business sectors. This allows
us to define business sectors without knowing anything about the separate stocks: a Martian
who cannot understand stock symbols could nonetheless identify business sectors [47, 48].

9. Statistical physics and firm growth

In the economy, each firm depends on every other firm, and the interactions are not short
ranged nor are they of uniform sign. For example, Ford Motor Company is in trouble because
they have been selling their Explorer vehicle with extremely unsafe tyres—and the price of
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their stock is going down. Prospective buyers purchase General Motors cars instead. There is
thus a negative correlation between the stock prices of the two companies. But now General
Motors needs to hire more workers to make a larger number of cars, and the McDonald’s near
the assembly plant has many more customers at lunch-time—a positive. Sometime later the
situation may change again. So we can say that the ‘spins’ all interact with one another, and
that these interactions change as a function of time.

Nevertheless, the general idea of a critical phenomenon seems to work. If the firms were
spread out in a kind of chain, the correlations among them would decay exponentially. Instead,
the firms interact with each other in much the same way as subunits in critical phenomena
interact with each other. This fact motivated a study carried out about five years ago by a
group of physicists interacting with an economist [51–53]. They calculated the fluctuations in
business firms from one year to the next. They found that if they broke the fluctuations into
bins by size, a tent-shaped distribution function was produced for each day of trading. The
width of the tent was narrower for large firms than the width of the tent for small firms. This
is not surprising, since a small firm has a potential to grow or shrink much more rapidly than
a larger firm. When the widths of these tent-shaped distribution functions were plotted on
log–log paper as a function of histogram size, the decreasing function turns out to be a straight
line—corresponding to a power-law behaviour in that function. The exponent in that power
law is ≈0.2. The linearity extends over a number of decades, indicating that the data collapse
onto a single plot irrespective of scale. This new result, which appears to be quite robust, has
caught the attention of John Sutton [54], one of the leading economists at the London School
of Economics, and of a number of other economists.

10. Universality in company growth

Takayasu and Okuyama [55] have demonstrated that the above results are universal by moving
outside the realm of US economies and studying firm behaviour in other parts of the world.

Buldyrev et al [53] have shown that organizations (such as business firms) that are
organized like trees will fluctuate in size. The hierarchical structure is set up such that
instructions from the top of the hierarchy propagate down to the branching lower levels of
the structure. Within that structure is a disobedience factor—those lower down do not always
obey the directives handed down from those above them. This factor is, of course, crucial to
the survival of the system. If employees always did only and exactly what they were told, any
small mistake put into the system by a manager would grow and do an increasing amount of
damage as it propagated through the expanding tree structure of the organization. On the other
hand, the probability of an instruction being disobeyed cannot be one—or chaos would result.
The propensity to disobey can be neither infinitesimal nor unity. The ‘obeying probability’
needs to settle at a point at which the organization can maintain both its integrity and self-
corrective flexibility. And the behaviour of the exponent describing this probability is very
similar to the behaviour of critical exponents.

This result is fairly robust, not only as far as business firm fluctuations are concerned, but
also in the size of countries. Lee et al [56] extend the same analysis as was used for business
firms to countries—and with the same exponent. Data can therefore be graphed on the same
curve both for firms and for countries—where country size is measured by GDP.

We can see a similar pattern in the funding of university-based research. We researchers
compete for research money the same way as business firms compete for customers. Plerou
et al [57] analysed the funding of research groups over a 17-year period in the same way as
fluctuations in firm size were analysed. The results were very similar, with the data collapsing
onto the same curve.
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As a final example, we mention the case of fluctuating bird populations in North America.
In this case the exponent is 0.35 instead of 0.2. But, nevertheless, there seems to be some kind
of property of organizations that we do not understand well [58].

11. ‘Take-home message’

So—what have we learned? First, that the approach that we have emphasized is an empirical
approach where one first seeks to uncover features of the complex economy that are challenges
to understand. We find that there are two new universal scaling models in economics: (i) the
fluctuation of price changes of any stock market is characterized by a PDF which is a simple
power law with exponent α + 1 = 4 that extends over 102 standard deviations (a factor of 108

on the y-axis); (ii) for a wide range of economic organizations, the histogram that shows how
size of organization is inversely correlated with fluctuations in size with an exponent β ≈ 0.2.

Neither of these two new laws has a firm theoretical foundation. This situation parallels
the situation in the 1960s when the new field of critical phenomena also did not have a firm
theoretical foundation for its new laws, but was awaiting the renormalization group. It is my
hope that some of you will rise to the challenge and try to find a firm theoretical foundation for
the structure of the empirical laws that appear to be describing (i) finance fluctuations, and (ii)
economic organizations.
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