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aDepartament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Jordi Girona 1-3, 08034 Barcelona, Spain
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Abstract

This paper describes an experimental comparison between a discrete stochastic optimization procedure (Simulated Annealing, SA) and a

continuous deterministic one (Mean Field Annealing), as applied to the generation of Balanced Incomplete Block Designs (BIBDs). A neural

cost function for BIBD generation is proposed with connections of arity four, and its continuous counterpart is derived, as required by the

mean field formulation. Both strategies are optimized with regard to the critical temperature, and the expected cost to the first solution is used

as a performance measure for the comparison. The results show that SA performs slightly better, but the most important observation is that

the pattern of difficulty across the 25 problem instances tried is very similar for both strategies, implying that the main factor to success is the

energy landscape, rather than the exploration procedure used.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There is nowadays a growing interest in computational

models inspired in physical and natural phenomena

(quantum computing, DNA computing, evolutionary algor-

ithms, chaotic networks). This, together with the practical

successes attained by artificial neural networks, has raised

some intriguing theoretical questions on the links between

discrete and analog computation. Is there a relationship

between the complexity of algorithms in the continuous and

discrete settings for solving the same problem? How do

approximate solutions affect the complexity?

Computational complexity theory, as developed within

Computer Science, has focused on discrete computation,

whereas analog computation has mainly been studied using

the tools of Theoretical Physics. However, to try to answer

the above questions, theories to study both types of

computation under a unifying perspective are needed, and

these are only beginning to be developed. Meanwhile,

several experimental studies have been undertaken to

explore the links between discrete and continuous

solutions to the same problem. This paper presents one

such study.

Block designs are combinatorial objects satisfying a set

of integer constraints (Colbourn & Dinitz, 1996; Hall, 1986;

Street & Street, 1987). They were introduced in the thirties

by statisticians working on experiment planning, and are

nowadays being used in many other fields, such as coding

theory, network reliability, and cryptography. The most

widely used designs are the Balanced Incomplete Block

Designs (BIBDs). Their generation is a very challenging NP

problem (Corneil & Mathon, 1978) with a wide variety of

problem instances, ranging from very easy to very hard

ones; some relatively small designs even remaining

unsolved (McKay & Radziszowski, 1996).

Its wide variability in size and difficulty makes this

problem a very appropriate benchmark to carry out the

aforementioned comparative experimental study. Moreover,

we have good knowledge of the relative computational

difficulties of its different instances, after having explored

them thoroughly using systematic search procedures

(Meseguer & Torras, 1999, 2001).
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In this paper, we formulate the generation of BIBDs as a

combinatorial optimization problem and tackle it using

optimizing neural networks. Several such network models

have been proposed in the literature leading to good

practical results: Hopfield networks (Hopfield & Tank,

1985), Boltzmann machines (Aarts & Korst, 1988), Cauchy

machines (Takefuji & Szu, 1989), Gaussian machines

(Akiyama, Yamashita, Kajiura, & Aiso, 1989), Mean

Field Annealing (MFA) (Peterson & Anderson, 1987;

Peterson & Södeberg, 1989) and, more recently, chaotic

neural networks (Chen & Aihara, 1995; Kwok & Smith,

1999). Among them, we have chosen two classical models

for the comparison, namely Boltzmann machines (which

implement Simulated Annealing, SA) and MFA. The former

works on a discrete state space, while the latter evolves in a

continuous one. In some sense, the latter can be seen as the

deterministic version of the former. Both are based on

statistical mechanics models and, therefore, they have a

strong theoretical basis (Aarts & Korst, 1988; Hertz, Krogh,

& Palmer, 1993). In particular, due to the characteristics of

the problem tackled, we use networks with higher-arity

connections (Sejnowski, 1986), whose dynamics is analysed

in Goles and Matamala (1994).

Let us now turn to the performance measures to be used

in the comparison. Due to its constraint satisfaction nature,

BIBD generation is different from most combinatorial

optimization problems where the goal is to optimize the

‘quality’ of the solution (minimize the energy) with as little

computational cost as possible. In our case, only global

minima are of interest, that is, solutions corresponding to

BIBDs. In such a setting, the expected number of runs to the

first solution is a measure of the efficacy of an optimization

strategy (or, reciprocally, of the difficulty of a problem). Yet,

it does not take into account the resources invested by

different algorithms. Thus, for an objective comparison, the

expected cost to the first solution must be used, as a measure

of the efficiency of the search. In this work, since the two

relaxation strategies under study (SA and MFA) are based

on local search, the computational complexity of an

iteration (one update of each unit in the network) is the

same for both of them. Thus, in order to avoid implemen-

tation issues, computational costs are compared directly in

terms of the number of invested iterations.

2. The problem of BIBD generation

A Balanced Incomplete Block Design ðv; b; r; k;lÞ-BIBD

can be defined in terms of its incidence matrix as follows.

Let A ; ½xij� be a given configuration in the space A2

v £ b of binary configurations with v rows and b columns.

Let the state variables xij [ {0; 1} represent the incidence of

treatment i in block j of A; and let ri ¼
Pb

j¼1 xij be the

number of ones in row i (the replicate number for treatment

i), kj ¼
Pv

i¼1 xij the number of ones in column j (the size of

block j), and lik ¼
Pb

j¼1 xijxkj the correlation or dot product

between rows i and k (the number of times that treatments i

and k occur together in a block).

Definition 1. For fixed r; k and l; with k , v and l . 0; we

say that A is the incidence matrix of a BIBD with parameters

ðv; b; r; k;lÞ if and only if:

(i) Uniform columns: kj ¼ k; j ¼ 1;…; b:

(ii) Balance: lik ¼ l; i ¼ 1;…; v 2 1; k ¼ i þ 1;…; v:

It is not difficult to show (Street & Street, 1987) that when

(i) and (ii) apply it also follows that

(iii) Uniform rows: ri ¼ r; i ¼ 1;…; v:

In order to be consistent, a set of BIBD parameters has to

fulfill the following admissibility conditions:

kb ¼ rv

lðv 2 1Þ ¼ rðk 2 1Þ:

The first equation adds up to the total number u of ones in

the design, while the second equation counts the number of

ones co-occurring with those of a given row.

The admissibility of its parameters is a necessary but not

sufficient condition for the existence of a block design. The

situation is summarized in Mathon and Rosa (1996), that

lists all non-trivial admissible parameter sets with r # 41;

together with the currently known bounds on the number of

non-isomorphic solutions. For some particular parameter

sets, it has been established that a design does not exist, and

other cases remain unsettled. Some (infinite) families of

block designs (designs whose parameters satisfy particular

properties) can be constructed analytically, by direct or

recursive methods (Hall, 1986, Chapter 15), and the state of

the art in computational methods for design generation is

described in Gibbons (1996). The smallest unsettled case is

(22,33,264) (McKay & Radziszowski, 1996), with vb ¼ 726

entries, which proves that exhaustive search is still

intractable for designs of this relatively small size. In the

general case, as with other combinatorial configurations, the

algorithmic generation of block designs is an NP problem

(Corneil & Mathon, 1978).

3. A fourth-order network for the generation of BIBDs

The generation of block designs is a constraint

satisfaction problem. In order to use optimizing neural

networks, we must first reformulate it as a combinatorial

optimization problem and then map it onto a standard neural

network architecture.

Let A2 v £ b be the set of all A ; ½xij� binary

configurations with v rows and b columns. We say that F :

A!R is a cost function for the generation of block designs

if there exists a lower bound Fp such that FðApÞ ¼ Fp if and
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only if there exists a ðv; b; r; k;lÞ-BIBD with incidence

matrix Ap:

Let

Nq ¼
Xv21

i¼1

Xv

k¼iþ1

Xb21

j¼1

Xb

l¼jþ1

xijxkjxilxkl

be the number of quadruples of ones in a given

configuration A (combinations of four ones arranged

square-wise), and let

Nu ¼
Xv

i¼1

Xb

j¼1

xij

be the number of ones in A: The local increment of these

measures with respect to component ða;bÞ is

DabNq ¼ Nqlxab¼1 2 Nqlxab¼0 ¼
Xv

i–a

Xb

j–b

xajxijxib

DabNu ¼ Nulxab¼1 2 Nulxab¼0 ¼ 1:

We finally define the cost function

Fuq ¼ 2nNu þ Nq; ð1Þ

with local increment

DabFuq ¼ 2nDabNu þ DabNq:

Notice that, from the definition of local increment, the actual

increment resulting from updating unit ða;bÞ (i.e.

xab ˆ �xab) is ð1 2 2xabÞD
abFuq:

Theorem 1. Given a set (v; b; r; k; l) of admissible

parameters, the function Fuq in Eq. (1) is a cost function

for the generation of BIBDs iff

ðk 2 1Þðl2 1Þ , n , kl:

Its global minimum is

Fp
uq ¼ 2nu þ

v

2

 !
l

2

 !
:

As described in detail in Bofill (1997), over all configur-

ations with a given number o of ones, the number Nqlo of

quadruples is minimum when columns are maximally

uniform and pairs of rows are maximally balanced. The

marginal increment DpNqlo of this lower bound increases

with o; whereas the marginal increment for Nu is 1. Thus, by

setting n between DpNqlu 2 1 and DpNqlu; we guarantee

that any configuration minimizing Fuq will have exactly the

desired number u of ones. The optimal value is obtained by

counting the number of ones and quadruples that would be

present in a configuration satisfying conditions (i)–(iii) in

Definition 1. For the sake of symmetry, in the experiments

described later, n was set to the value in the middle of the

allowed range ðn ¼ kl2 k=2 2 l=2 þ 1=2Þ: Other cost

functions for BIBD generation that make use of the

remaining properties of a block design (ones per row,

ones per column and quadruples of zeros) are described in

Bofill (1997) and discussed in Section 7.

The above cost function is isomorphic to an optimizing

neural network by arranging vb neural units in v rows and b

columns, and assigning each state variable xij to the unit

with coordinates ði; jÞ: Then, each square-wise combination

of four units corresponds to a potential quadruple (a fourth-

order connection with connection weight 1), and all

individual units have their threshold with weight 2n: Cost

function Fuq corresponds thus to the energy E of the network

and the local increments DabFuq correspond to local fields.

In the following, the terms energy and function cost will be

used indistinctly.

4. Optimization with simulated annealing

The basic relaxation strategy for optimization networks

is Down-Hill search. The decision rule is to accept all

energy-decreasing transitions, until an optimum is found or

the algorithm converges to a minimum:

xab ˆ �xab iff ð1 2 2xabÞD
abF , 0:

The goal of SA is to avoid undesired local minima by means

of thermal noise. If the Metropolis decision rule is used

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,

1953), the probability of accepting a transition at compu-

tational temperature T is given by

P{xabˆ �xab}¼
1; ð122xabÞD

abF , 0

e2ðð122xabÞD
abF=TÞ

; otherwise

8<
: :

The efficacy of SA depends on a good temperature schedule.

The goal is to spend most of the relaxation time around the

critical temperature Tcri; where global minima start to be

noticeable (i.e. when escaping from deeper minima starts to

be significantly harder). For T qTcri; the system evolves

randomly, whereas for T pTcri the system ‘freezes’ in a

local minimum. The usual procedure is to start at a

sufficiently high initial temperature T0 and decrease it

slowly until some final temperature Tf :

In this work, in order to avoid big perturbations to the

thermal equilibrium, rather than making a large temperature

update after each iteration, we made smaller temperature

updates after each unit update, thus leading to a smooth

cooling schedule. The actual decrement law that was used

(Gutzmann, 1987) is

Tk ¼
ffiffi
tvb

p
Tk21;

with k the number of updated units and t the decay constant

corresponding to an iteration. The temperature range was set

to T0=Tf ¼ 2 and the maximum number of iterations per

descent was set to Nt ¼ 100; thus yielding t ¼ ðTf =T0Þ
1=Nt : If

after Nt iterations, no solution had been found, the search

was stopped and the system was driven with Down-Hill
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search to the nearest local minimum. Yet, in practice, most

of the solutions were found well before Nt iterations.

The remaining parameter is the central operational

temperature Tc ¼
ffiffiffiffiffiffi
T0Tf

p
; which was set experimentally as

follows. A training set was defined with seven problems

randomly selected among the 25 smallest BIBD settings

(see Table 1 in Section 6), and the optimal temperature T
opt
c

was obtained for each problem by experimental optimiz-

ation (finding the Tc that minimized the expected cost to the

first solution). An experimental law could then be found that

relates the optimal temperatures to the parameters of the

BIBD, and a ‘standard’ central temperature setting was thus

defined, T std
c ¼ 0:110 £ ðk þ l2 1Þ; allowing for an a priori

estimate of the operational temperature. Results were then

generalized over the remaining (25 2 7) problems (the test

set), and the optimality of this standardized setting was

verified, with quite consistent results.

5. Optimization with mean field annealing

The deterministic counterpart of SA is MFA. According

to statistical mechanics, the average value of a unit xij; that

we will denote mij; is given by

mij ¼ kxijl ¼

X
k

xk
ij expð2Fk

=TÞ

Z
;

where the sum extends over all the possible states k of the

unit, F is the energy of the configuration and depends of

the state of all the units, Z is the partition function, and T is

the computational temperature, as before. The mean field

approximation consists in considering that each unit is

interacting with an average field khijl generated by the others

and given by

khijl ¼
›F

›xij

:

Thus, the value mij of a continuous unit is found through

iteration by solving the equation

mij ¼
1

2
1 þ tanh 2

1

2T
khijl

	 
� �
: ð2Þ

The continuous counterpart of the cost function (1) is

Fuq ¼ 2n
Xv

i¼1

Xb

j¼1

mij þ
Xv21

i¼1

Xv

k¼iþ1

Xb21

j¼1

Xb

l¼jþ1

mijmkjmilmkl

and the corresponding mean field felt by a unit in row a and

column b is given by

khabluq ¼ 2nu þ
Xv

i–a

Xb

j–b

majmijmib:

Iterating, as we did, at a fixed operational temperature T ; the

convergence of Eq. (2) shows two different behaviors or

phases. For T greater than the critical temperature of

the system Tcri; the final state corresponds to the fixed point

where all the units have the same value, mp; given by

the condition

mp ¼
1

2
1 þ tanh 2

1

2T
khðmij ¼ mpÞl

	 
� �
:

Thus, no feasible solutions for the optimization problem are

found in this high temperature phase.

On the contrary, when T , Tcri; the units relax to values

close to 1 or 0 (Fig. 1). By actually freezing the units to

either 0 or 1, the solutions obtained correspond to low

energy configurations of the optimization problem.

To characterize the transition between one phase and the

other, a saturation s can be defined in the following way

(Peterson & Södeberg, 1989):

s ¼
1

u

X
i;j

m2
ij:

For the low temperature phase, s is close to 1, while for

T . Tcri; it is significantly smaller. Measuring the

saturation s and plotting it against increasing values of

the operational temperature T ; we observe that, at the

critical temperature Tcri; either a discontinuity in the plot or

a discontinuity in its first derivative is observed, depending

on the problem considered (Fig. 2). Since in the high

temperature phase, the network does not find feasible

solutions, Tcri represents an upper bound for the actual

operational temperature, and finding the discontinuities in

the saturation curve is a useful procedure for estimating

Tcri: It is worth noting that there is not an equivalent

procedure in the discrete case (SA).

Typically, as the operating temperature is closer from

below to Tcri; it is more likely to find a solution since the

probability of the system being trapped in a local minimum

is lower. However, for the same reason, descents are usually

longer in this case. Thus, these two effects compete and in

general there is an optimal temperature Topt for which the

expected cost to the first solution is minimum, although

Fig. 1. Evolution of the value mij of the units for T ¼ 2:1 , Tcri on problem

(10,18,9,5,4) (problem d12 in Table 1, Section 6).
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sometimes this minimum is wide instead of being localized

at a given Topt (Fig. 3). For the experiments reported in

Section 6, where MFA and SA are compared, we used this

optimal temperature as the actual operational temperature

for each problem.

The second issue that must be taken into account is when

to stop a descent. At the end of each iteration, we freeze the

system by setting the units either to 0 or 1. If the

configuration corresponds to the incidence matrix of a

BIBD, then we stop the process (a successful descent),

otherwise we continue. Thus, we have to provide a

mechanism to decide when to stop an unsuccessful descent.

As in the case of SA, it would be possible to set a maximum

number of iterations. Nevertheless, it is possible to use again

the continuous nature of the units to establish a more

adequate stopping criterion. When a unit is trapped in a

value close to 0 or 1, its value is very unlikely to change.

Based on this, we can stop our descent and consider it has

failed when all the units are near 0 or 1. Although this may

frustrate some successful descents, it also drastically

reduces the cost of failed descents, resulting in a general

reduction of the expected cost to the first solution. In our

experiments, we stop the descents when all the units have

values outside the region (0.25,0.75). In addition, it is

necessary to set a maximum number of iterations for cases

in which a unit is trapped in a metastable value inside this

region, but since this does not happen very often, it has little

influence on the average expected cost. In our experiments,

the maximum number of iterations is set to three times the

average cost of successful descents.

6. Experimental comparison

Table 1 shows the experimental results, comparing the

expected cost to the first solution for the two strategies.

The most important observation is that the pattern of

difficulty is similar. Harder problems were hard for both

MFA and SA, while easier problems were easy in both

cases. The main factor to success is thus the energy

landscape of the problem itself, rather than the strategy

being used to explore it.

Moreover, the fact that the observed pattern of difficulty

is in agreement with the results previously obtained using

systematic search procedures (Meseguer & Torras, 1999,

2001) implicitly validates the cost function proposed, which

thus appears to reflect faithfully the characteristics of the

problem.

Even though the differences in the results were not large,

SA performed slightly better, with 13 best marks out of the

25 problems studied, against five for MFA. In six cases,

results were within the experimental error and problem d22

remained unsolved.

Fig. 4 shows a comparison between the optimal

temperatures for each strategy. Notice that although

Fig. 2. Two different saturation curves as a function of the operational temperature, for problems (7,7,3,3,1) and (9,60,20,3,5), respectively.

Fig. 3. Cost to the first solution as a function of T for problems (7,14,6,3,2)

and (11,11,5,5,2) (problems d3 and d7 in Section 6).

P. Bofill et al. / Neural Networks 16 (2003) 1421–1428 1425



the values of the temperatures differ, low optimal tempera-

tures in MFA correspond to low optimal temperatures in SA

and, conversely, high optimal temperatures in MFA

correspond to high optimal temperatures in SA. Again,

this shows that optimal temperatures are intimately related

to the energy landscape of the problem.

7. Modifications to the cost function and their effects

on the landscape

Other cost function structures were tried in an attempt to

smooth the energy landscape and improve the results. In the

first place, redundancy was added by quadratically penaliz-

ing configurations with too many ones, rows with too many

ones, and columns with two many ones. But the number of

local minima actually increased and the results were poorer.

Then, a different structure was tried by balancing the

quadruples Nq of ones against the quadruples N�q of zeros.

But again the number of local minima increased. In a third

attempt, with similar results, a second order cost function

was derived by considering the quadratic error between the

current number of quadruples and the number of quadruples

in an optimal configuration. See Bofill (1997) for details on

the three attempts.

Finally, a different approach was tested that consisted of

changing the updating rule (and, as a consequence, the

definition of the states) rather than the cost function

structure. Instead of updating one unit at a time, a quadruple

of units were updated simultaneously (four units arranged

square-wise) following a ð10=01 ! 01=10Þ scheme. The

transition was accepted whenever the number Nq of

quadruples decreased but, by construction, the number of

ones per row and column remained always constant. Thus,

the state space was restricted to all states with the exact

number of ones per row and column. The same scheme can

be found in Mathon (1989) and we used it again later in

Bofill and Torras (2003). Results with this approach were

much better than with the original cost function, but the

structure of the system was no longer a neural network.

Our interpretation of these results is the following. There

seem to be energy barriers associated with setting the

number of ones per row and column. Adding redundancy to

these terms—as in the first attempt—simply makes matters

worse. Yet, by suppressing all intermediate states and

allowing only the states with the right number of ones per

row and column—as in the non-neural approach men-

tioned—most of the barriers disappear. The second attempt

is faced with the local minima of both quadruples of ones

and quadruples of zeros. And the third attempt is very

restrictive in the values of the units, thus generating many

local minima.

Thus, without stepping out from the neural networks

context in which we have set up our comparison, it turns out

that the cost function Fuq is the one providing most suitable

landscapes (i.e. with the least number of local minima)

among the ones tried in our experimentation.

8. Discussion and related work

Since the seminal paper of Kirkpatrick, Gelart, and

Vecchi (1983), SA has been applied to a large number of

combinatorial optimization problems. In general, SA has
Fig. 4. Optimal temperature for Simulated Annealing against optimal

temperature for Mean Field Annealing for the first 25 problems.

Table 1

Expected cost to the first solution (in iterations) for MFA and SA over the

25 smallest problems in Mathon and Rosa (1996)

# ðv; b; r; k; lÞ MFA SA

d2 (6,10,5,3,2) 12.731 (0.092) *7.9 (0.2)

d4 (9,12,4,3,1) 92.386 (4.002) *80.0 (1.7)

d8 (7,21,9,3,3) 64.223 (2.684) 61.9 (1.4)

d10 (9,18,8,4,3) 1021.551 (67.714) *572.4 (37.5)

d15 (9,24,8,3,2) 84.703 (5.217) *41.1 (0.2)

d18 (6,40,20,3,8) 10095.217 (6527.630) *1906.8 (175.0)

d21 (16,16,6,6,2) 445.919 (26.674) 421.9 (32.6)

d1 (7,7,3,3,1) *6.752 (0.085) 7.3 (0.1)

d3 (7,14,6,3,2) 23.525 (0.678) *13.0 (0.1)

d5 (8,14,7,4,3) 169.875 (16.921) *112.3 (5.6)

d6 (6,20,10,3,4) *100.405 (6.815) 122.1 (1.6)

d7 (11,11,5,5,2) 57.599 (0.528) *48.2 (0.6)

d9 (10,15,6,4,2) 705.085 (87.724) *233.9 (7.1)

d11 (13,13,4,4,1) *14.842 (0.173) 22.9 (0.4)

d12 (10,18,9,5,4) 22811.167 (2841.495) 29441.2 (5128.6)

d13 (6,30,15,3,6) 981.193 (207.090) *453.7 (21.7)

d14 (7,28,12,3,4) 598.844 (65.344) 596.0 (13.5)

d16 (8,28,14,4,6) 15072.170 (11627.418) 9381.1 (1507.9)

d17 (15,15,7,7,3) *1403.124 (80.516) 3894.1 (512.9)

d19 (11,22,10,5,4) *124329.667 (480.077) 206995.0

d20 (7,35,15,3,5) 5688.000 (3699.850) *840.3 (34.9)

d22 (12,22,11,6,5) – –

d23 (7,42,18,3,6) 13486.000 ( ) *3550.3 (372.2)

d24 (10,30,12,4,4) 29540.560 (17623.532) 35200.7 (21245.0)

d25 (10,30,9,3,2) 182.888 (14.390) *79.9 (2.1)

The first seven rows correspond to the training set for SA, and the

remaining 18 to the test set. Entries show mean values and their deviations

(within parenthesis) after five descents. For each problem, the entries

signaled ‘*’ show significantly best marks. Hyphens signal unsolved

problems
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been shown to give good solutions and actually it has been

demonstrated that it can find the global optimum if the

cooling schedule is slow enough. From a practical point of

view, this temperature schedule is unfeasible and, even with

faster schedules, the algorithm can be very time consuming.

With the proposal of the MFA algorithm (Peterson &

Anderson, 1987, 1988; Peterson & Södeberg, 1989) this

shortcoming seemed to be overcome and its application

to a number of problems showed that solutions

comparable to those obtained with SA could be obtained

in much shorter times (Bilbro, Snyder, Granier, & Gault,

1992; Peterson & Anderson, 1987, 1988; Peterson &

Södeberg, 1989). Recent works dealing with different

problems have arrived to similar conclusions. To cite

only a few examples, Herault and Horaud (1993) found

MFA to perform 40 times faster than SA in a problem of

image recognition, and Aykanat, Bultan, and Haritaoglu

(1998) showed that a MFA-based algorithm was able to

get good solutions faster than SA.

However, examples in which SA outperforms MFA in

terms of quality of the solutions are also abundant in the

literature. For example, SA has been shown to yield

better results in problems of automated timetabling

(Elmohamed, Coddington, & Fox, 1998), in traffic

management (Ansari, Arulambalam, & Balasekar,

1996), and in Markov random field modeling (Li,

Wang, Chan, & Petrou, 1997).

These examples and many others have suggested that,

although SA and MFA are related algorithms, the different

nature of the updating process (continuous–deterministic

versus discrete–stochastic) may have a significant effect on

performance. Clarifying whether this is the case and

understanding the origin of the reported performance

differences is an important open issue in combinatorial

optimization.

From this perspective, the generation of BIBDs provides

an excellent benchmark since, within the same family of

problems, one finds both easy problems and difficult ones, as

well as problems that are more efficiently solved by MFA

versus problems for which SA works better. Moreover, in

the case of BIBD generation, the ‘quality’ of the

optimization process is a binary variable: either success

when a solution—global minimum—is found, or failure

when it is not. Thanks to this, by choosing the expected cost

to the first solution as the performance measure, we solve

the dilemma of having to consider separately the quality of

the solution and the computational cost.

Our work on BIBDs sheds light on two different aspects

of the above issue. First, it establishes that in order to

achieve qualitative better results, it is necessary to change

the structure of the energy landscape rather than the

optimization algorithm. Second, the detailed results on the

benchmark permit studying in which situations one should

consider MFA and in which ones one should resort to SA in

order to get best quantitative results.

9. Conclusions

This paper has presented the formulation of BIBD

generation in terms of optimization with a fourth-order

neural network, and its continuous counterpart in the

framework of mean field theory. A total of 25 problems

have been used for the experimental comparison between

two optimization strategies, SA and MFA, in terms of the

expected cost to the first solution.

Operational temperature and stopping condition were

defined differently for each strategy. For SA, a training stage

was used over a subset of the problems, and parameters

were generalized to the remaining test problems. For MFA,

on the other hand, the continuous nature of the units

provided a stopping condition and an experimental

procedure for determining the critical temperature of the

system, based on the saturation versus temperature plot. To

use best case results, though, comparisons were done using

the optimal temperature for each problem.

In all, SA performed slightly better, but the most

significant result was a common pattern of difficulty:

difficult problems for SA were also difficult for MFA and

easy problems for SA were also easy for MFA. There was a

similar relationship between the optimal operational

temperatures in both cases. This shows that even when the

search strategy may have some influence, the main factor

determining the difficulty of a problem is the shape of its

energy landscape, and deciding which is actually the best

strategy depends on the problem considered. This suggests

that significant improvements in performance should be

oriented to smoothing or simplifying the energy surface,

rather than trying to improve the optimization technique

itself.
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