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Statistics of lowest droplets in two-dimensional Gaussian Ising spin glasses
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An approach to determine the value of the zero-temperature thermal expgbimespin glasses is presented.
It consists in describing the energy level spectrum in spin glasses only in terms of the properties of the lowest
energy droplets and the lowest droplet expong€bBE’s) \,, 6, that describe the statistics of their sizes and
gaps. We show how these LDE's yield the standard thermal exponent of droplet thémgugh the relation
0=6,+d\,. The present approach provides a new way to measure the thermal expgométiiout any
assumption about the correct procedure to generate typical low-lying excitations as is commonly done in many
perturbation methods including domain wall calculations. To illustrate the usefulness of the method we present
a detailed investigation of the properties of the lowest energy droplets in two-dimensional Gaussian Ising spin
glasses. By independent measurements of both LDE’s and an aspect-ratio analysis, vg¢2the
—0.46(1)< Opw(2d)=—0.287 wherefp,, is the thermal exponent obtained in domain-wall theory. We also
discuss the origin of finite-volume corrections in the behavior of the L4pEANd relate them to the finite-
volume corrections in the statistics of extreme values. Finally, we analyze some geometrical properties of the
lowest energy droplets, finding results in agreement with those recently reported by Kawashima aptl Aoki
Phys. Soc. Jpr69, 169(2000]. All in all, we show that typical large-scale droplets are not probed by most of
the present perturbation methods, since they probably do not have a compact structure as has been recently
suggested. We speculate that a multifractal scenario could be at the roots of the reported discrepancies on the
value of the thermal exponentin the two-dimensional Gaussian Ising spin glass.
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I. INTRODUCTION The low-T behavior in spin glasses is determined by a spec-
trum of large scale gapless droplets with typical lengtmnd
Despite three decades of work in the field of spin glassessnergy cosE~L?, @ being the thermal exponent. As these
major issues related to their low-temperature behavior stildroplets correspond to flipping some domains of sgas
remain unresolved Although important achievements have sumed to be compact clustgréhe energy cost of these ex-
been obtained in the understanding of mean-field tHettiy ~ citations arises from the set of unsatisfied bonds on their
appropriate treatment beyond mean-field to include shortsurface. The striking loWwF behavior in spin glasses arises
range interactions is yet to be found. Due to the absence of om multiple energy cancellations occurring at the surface
successful analytical approach to deal with this problem, thef the droplet. These cancellations can be seen as the result
present state of our knowledge is often misguided by a nonef a competition between energy and entropy effects: as the
accurate, if not confusing, interpretation of the numericaldroplet becomes progressively larger there are more avail-
data. This situation has generated a hot debate about tlale conformations for the surface to minimize the energy
correct physical interpretation of the available numericalcost of the unsatisfied bonds. In the absence of cancellations
data. Leaving aside the long-standing controversy whethesne would expect=(d—1)/2. However, as these cancella-
replica symmetry breaking is or not a good description of thetions are very important, the inequalig<(d—1)/2 holds
spin-glass phasethere are still unresolved issues which areand 6 is by far less than the maximum valué 1)/2. The
not as striking but show our ignorance about some fundavalue of the thermal exponerft characterizes the low-
mental questions. critical behavior as it is related to the correlation length ex-
One among these problems is the correct value of th@onentr whereé~T™" by the identitypy= —1/6. McMillan
thermal exponent in two-dimension&D) Gaussian Ising also used domain-wall renormalization group ideas to intro-
spin glassegGISG’s). This question has received attention duce a practical way to determine the leading energy cost of
from time to time during the last two decades, but notthese low-lying large-scale excitatioh§he method consists
enough to settle it definitively and explain the origin of somein measuring the energy defect of a domain-wall spanning
of the reported discrepancies. The study of the Towrop-  the whole system obtained by computing the change of the
erties of the 2D GISG’s starts with the work by McMillan, ground state energy when switching from periodic to antipe-
who proposeti that thermal properties in spin glasses areriodic boundary conditions in one direction. Several works
determined by the scaling behavior of the typical largest exhave used McMillan’s method to determine the value af
citations (commonly referred to as droplgtpresent in the two and three dimensiod€ Hereafter, in order to keep the
system. This idea has been further elaborated and extende@cussion as clear as possible, we will denotedgy; the
to deal with equilibrium and dynamical properties of spinestimate of the exponert obtained by domain-wall calcu-
glasses in a scenario nowadays referred to as droplet modelations. The initial value forfp,, reported by McMillan is
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6pw=—0.281(5) for pretty modest lattice sizés=3—8. that determine the low- thermodynamic properties. In fact,
Recent numerical results with much more powerful algo-the estimatedp,, can be considered as a particular example
rithms have reached siz¢s=500 and confirmed the initial ©Of fp, where the perturbation consists in reversing all the
result with much larger accuraty’ 6py=—0.2874). bonds in one of the surfaces of the box. This raises the im-
These studies would definitively close the problem if it werePOrtant question whether the different estimatesef ob-
not by the existence of other alternative estimates of the ex@ined by considering different class of perturbations, are dif-
ponent#, largely consistent among them, which yield aquitefergnt'.The question s rgther subtle as there are numerical
different valuef=—0.47(2). We will denote this estimate indications that indeed this could be the case. For instance,
by 6 as several of these methods use transfer m&trix. measureme nts .09P where the periurbation is a unifgrm
However, a word of caution is necessary here as the Mommagnetlc field yield a valu@p=—0.48(1) compatible with

e other competing set of valuésg.
Carlo method and other approaches that are not based on peing 65+

method to estimate the stiffness exponerithe idea is 0 qffer only speculative answers. Strong discrepancies among
generate a droplet inside a box of size&L that includes @ gifferent types of perturbations could arise if a multifractal
fixed central spin, with the following procedure. First, the scenario governs the statistics of excitations in spin glasses.
ground state is found with a standard algorithtee will By definition, in all perturbation methods the probed large
denote it by the reference configuraiorfterward, the scale droplets are those which minimize the energy cost but
spins at the boundaries of the box are fixed and the centra@onstrained to maximize the value of the perturbation for the
spin is forced to flip respect to the reference configurationselected droplets. Therefore, among all possible large-scale
The droplet of minimum energy that includes the central relow-lying droplets the perturbation method selectively
versed spin and does not touch the boundaries is computegrobes those that maximally overlap with the perturbation. A
The spanning length of the droplets generated in this waylependence of the valu® on a given class of perturbations
allows us to define the fractal dimension of both the surfaceould arise if the perturbation selectively probes one or an-
(or perimeter for the two-dimensional casand the volume. other topological property of the droplet. This rather awk-
It is found that these minimum energy droplets have a fractalvard multifractal scenario is not new in the field of disor-
volume dimension smaller than 2 and the thermal exponerdered systems. Multifractality is known to be present in the
is #=—0.42(5) in agreement with results obtained from MC localization problem in the strongly disordered regime. A
methods$* and heuristic optimization algorithnSA similar ~ multifractal scenario would imply the existence of different
study of minimum energy clusters in the three-dimensionactritical exponents at =0, depending on the type of pertur-
Edwards-Anderson model also reports evidence thafis  bation applied. On the other hand, the fact that the value
an upper bound to the actual value of the thermal expotient. estimated fo, when the perturbation is a uniform magnetic
The accuracy of previous estimates is poorer than the vaFeld appears to be consistent with the val4g, suggests
ues obtained through the domain-wall method as they deathat maybe some types of perturbation can probe the relevant
in one way or another, with all possible excitations and notexcitations while others may not. These good observables,
only with the calculation of ground state energies. More reswhich probe the typical excitations, could be called neutral
cently, another method has been used to estimate the value albservables in the same spirit as this term has been coined to
. It consists in perturbing the original Hamiltoni&ty with describe observable dependences of the fluctuation-
a termeP, whereP stands for the perturbation ardfor its  dissipation ratio(i.e., the effective temperatyrén glassy
intensity. For exampleP can be the overlap between the systems. Concomitantly, this “perturbation class depen-
actual configuration and the ground state of the originadence” issue is presently also debated in the diffelént
Hamiltonian H,. As e varies the new ground state of the related to a certain degregeld of glassy dynamics.
total HamiltonianH=Hy+ €P remains unchanged until a If the hypothetical multi-fractal scenario holds, then we
certain valuee= ¢, is reached where a excited energy levelmust face the question about what is the correct procedure to
of H, becomes the new ground state &f The overlap determine the thermal exponefit As @ determines the free
between the old and the new ground states as well as thenergy cost of droplets, the natural answer is thé given
value of the shifting energy provoked by the perturbationby the lowest value among all possible estimates
links its energy cosE with its size providing another way to

estimated. We will denote by#p the estimate obtained in O=miny{ 6p}. 1)
this way. This method has been recently used in the 2D
GISG by Hartmann and Youhgreporting the valuegp~ With the present available data this relation suggests that the

—0.31. Although slightly more negative th#g,,, 6pw and  estimated ¢ is the correct value of the thermal exponent and
0p appear to be statistically compatible. Yet more accurateéhat 6p,, as well as many other estimatés are only upper
estimates are needed to confirm whetbgr 6py . bounds to the true value.

This last method and the domain-wall method have in The question we want to address in this paper is the fol-
common the same feature, i.e., they perturb the originalowing. Is it possible to devise a method that is alternative to
Hamiltonian in one way or another to probe the characteristicurrent perturbation methods, in which excitations are not
energy of excitations that are supposed to be the typical onelectively probed by the perturbation, but selected only ac-
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cording to the correct balance between energy and entropyspin model the lowest excitation hasspins overturned with

The main purpose of this paper is to show that the analysis aespect to the ground statso the overlap between the

the statistics of the first or lowest excitations gives a positiveground and that excited state gs=1—2v/V, V being the

answer to this question. As we will see, the method we provolume of the systeinand with energy cost or gap. It can

pose in this paper yields a consistent estimat® ebmpat- be easily proved that the lowest excitation must be a con-

ible with the valuef;g, therefore supports the result that nected cluster which we will generically call the lowest drop-

Opw and many othepp are only upper bounds to the actual let. If v and E(s) denote the volume and excitation energy

value off. A preliminary account of these results has alreadyof the lowest droplet for samplg in the limit where\ is

appeared in Ref. 18. sent to infinity, we can define the following joint probability
The paper is divided as follows. Section Il describes thedistribution:

basis of the lowest droplet approach and introduces the low- \

est droplet exponents. Section Il shows the results obtained 1 3

in the 2D GISG. Section IV analyzes a method to extract the P(v,E)= N. 521 S(v—vs) L E-E(S)]. @

value of the thermal exponemdt Section V presents a more

powerful method to extract the value of the lowest dropletUsing the Bayes theorem, this joint probability distribution

exponents based on an aspect-ratio analysis. Section VI disan be written a®(v,E)=g,P,(E), where

cusses the origin of the finite-volume corrections to the value

of the lowest droplet exponet as a problem of corrections ®

in the statistics of extreme values. Section VIl analyzes some 21 9,=1, fo dEP,(E)=1 V. ©)

topological properties of the lowest droplets. Finally, Sec. ’

VIII presents the conclusions. There are also two technicad, is the probability to find a sample such that its lowest

appendixes. Appendix A presents the heuristic argument thafroplet has volume andP,(E) is the conditioned probabil-

¢,=—d for Gaussian spin glasses, and Appendix B explainsty for that droplet to have a gap equalfoIn what follows,

the transfer matrix method we used to obtain the lowes{ve separately discuss the scaling behavior of both distribu-

V2

droplets. tionsg, ,P,(E).
Before continuing, and for sake of clarity, let us make an
Il. BASIS OF THE LOWEST DROPLET APPROACH important digression about nomenclature. There arevioéo

) ) ) umesinvolved in the problem: the volume of the lowest
The purpose of this work is to show an alternative ap-excitation and the volum¥ of the lattice. If not stated oth-
proach to determine the loW-behavior of spin glasses by ernwise we will refer to the volume as the size of the exci-
studying the size and energy spectrum of the lowest excitaation while volume will generally refer to the lattice volume
tions by introducing two exponents\( and ;) needed to v Thus, when we speak about finite-size excitations we usu-
fully characterize the zero-temperature fixed point. All)ly refer to excitations with finite, and finite-volume cor-
through the paper we will denote these exponents as lowegctions(which we will sometimes abbreviate as FY@ill

energy droplet exponents or lowest droplet exponents ifefer to the corrections affecting the distributié®) due to
short, and that we will abbreviate as LDE's. The expongnt the finite volumeV of the lattice.

is the most important one and describes the probability of
finding a large-scale lowest excitation spanning the whole
system, while the exponem describes the system-size de-
pendence of the average energy cost of these lowest excita- The simplest scenario for the size distribution of the low-
tions. est droplets is that all sizes occur with uniform probability.

The underlying theoretical background of the approach isThe normalization conditiof3) imposesg, ~ 1/V. This situ-
the following. To investigate the leading low-temperature be-ation is encountered in the 1D GI8& with both free and
havior in spin glasses let us consider expectation values fdreriodic boundary conditions. However, in the most general
moments of the order parameter by keeping only the groungituation, this does not hold and low energy droplets are
state and the first or lowest excitation. This approach wa$ound with a probability that depends on their size The
introduced in Ref. 19 and can be shown to capture the lowsimplest and most general way to incorporate such a depen-
temperature behavior at the leading order. The method th&tence is to assume an ansatz solutiongptthat factorizes
investigates the loi- properties based on a restricted analy-into a power lawA/VM ™! with ;>0 and a coefficienAA
sis of the spectrum to the absolute lowest excitations has alss G(q) which depends only on the overlapbetween the
been used for the study of the localized phase in the disoiground state and the lowest droplet
dered Anderson modé&{. The present paper can be seen as
the applicability of these ideas to the spin-glass case. At the G(q)
end of the papefsee Sec. VIl we will give reasons sup- gv:m' )
porting the validity of our approach.

To generate the spectrum of lowest excitations we conThe behavior of G(q) can be guessed in both limits
sider the following procedure. Let us consider a set\gf g—1 (the caseq— —1 is equivalent in models with time-
samples and for each of them we determine both the configueversal symmetry which are those we are considering) here
rations of the ground state and the lowest excitation. For andq—0

A. The lowest droplet exponentA,
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G(g—0)—const, (5) diverges in thev—oo limit and differs from the typical ex-
citation volumev,,~O(1). Relation(10) provides a way to
measure the exponeNt alternative to the use of the scaling

1)y — behavior(4).
G(a-D) = = ©®)

The first relation describes the scaling behavior for the num- B. The lowest droplet exponentd

ber of droplets whose size scales with the total volume of the The analysis of the gap distributid?, (E) goes along the
system. As these can only depend on the volum&(0)  same lines as we did for the distributigp, but with one
must converge to a constant. The second relation is cons@nportant difference. As the gaf describes the lowest
quence of the fact that the number of droplets with finite sizeamong all possible excitation energies, it has to scale in the
v cannot depend oW in the largeV limit as these are not same way for all droplet sizemdependentlyon their size
affected by the boundaries. On the other hand, the distribuand, in particular, whether these are finite-size or large scale
tion of finite size dropletg, is self-similar as can be seen by droplets. This statement refers to a scenario which hereafter
inserting Eq.(6) in Eq. (4) and using the relatiomj=1  we will call the random energy-size dropl®ESD) scenario
—2v/V. This yieldsg,~1b""!, the same relation as for to specifically indicate that the distribution of the lowest en-
the large scale limit5), wheregy,~1NV""1 A simple ex- ergies of droplets is independent of their size. Mathemati-

pression that interpolates both limits is given by cally it can be expressed as
P,(E)=P(E), V. (12)
G(g)=| A+ M+1>' (7)
(1-a) In addition, we follow the standard droplet model and as-

sume that the spectrum is gapless and defined by an expo-

only an interpolation and the most we can say at®(u) netn;& V\lthCh c:]estcrlbefhthe gharactenshc e_?he ;%y of the CIJOW'
concerns its asymptotic behavia®,(6). est droplets whatever their size or overtppi e groun

The ansatz(4), applied only to large-scale excitations, State. If the scaling functio®,(E) is independent ob it
was proposed in Ref. 19. Note that althoughis defined for ~ follows immediately that the non-conditioned or size-
discrete volumes, in the limi>1, the values ofj for con-  averaged gap probability distribution
secutive droplet sizes—v+1 become equally spaced by
Ag=2N. Therefore, in the limity>1, the functiong(q)
=(V/2)g, becomes a continuous function if expressed in
terms of the variablel instead of the integer variabie

Note however that, despite its simplicity, expressi@h is

WBﬁ;&EEFZgﬁEFWB,(M

v=1

where we used Eq11) and the normalization conditiof3)

for g, . From now on, if not stated otherwise, we will always
G(q). (8) refer to the size-averaged probability distributiB(E) with
2VN the clear understanding that it coincides with any of the con-
ditioned distribution@U(E). As the spectrum of lowest ex-
citations is gapless, the normalized distributl{E) has the
following scaling behavior:

g(q)=

A word of caution is in order. Although Ed4) diverges for
g=1, leading apparently to a violation of the normalization
condition (3) for g, , it must be emphasized that no excita-
tion hasq=1 so there is a maximum cutoff valug =1

— 2V corresponding to one-spin excitations. For instance, if P(E)= i ( E
we insert Eq.(8) into the normalization condition fog(q) Lo

we get in the largéd/ limit,

o (13

We stress that the exponeéitis completely different from
A—BI\, B the standard thermal expondsee next sectioras they de-
Y + SN =1, (9  scribe totally different excitations. The thermal exponént
' describes the energy-length relation for droplets typically ex-
cited at finite temperatures while the lowest energy exponent
6, describes the droplets that are separated by the smallest
gap, respectively, to the ground state, so that, in general,
=40.
We will argue below in Sec. Il C tha#j=—d for a ge-
&eric class of spin-glass systems with coupling distributions
with finite weight at zero gap. In addition, this relation will
provide an alternative interpretation of the lower critical di-

g*=1-2N
fo g(q)dg=1—

implying A\;=0 as expected since otherwise the normaliza
tion would not be possible in the largélimit. The divergent
term (Q—1) in Eqg. (8) shows that fofn;>0 one-spin exci-
tations are the most numerous among the whole spectrum of
sizes. In fact, from Eq(4), g(1)=0(1)>g(V/2)=1N *1,

so the majority of excitations have a finite size. However, th
average excitation size

v mension in terms of the exponext introduced in Sec. Il A
b= E v,y VN (10) describing the properties of the spectrum of sizes of the low-
v=1 est droplets.

184421-4



STATISTICS OF LOWEST DROPLETS IN TWAQ .. PHYSICAL REVIEW B 67, 184421 (2003

C. The standard thermal exponent@ wherec, is another constarfdifferent from the constant
Now we want to show how the exponentsand 6, com-  aPpearing in Eq(16)]. Identifying both relationg16) and

bine to give the usual scaling exponentiescribing the en- (17) We obtain the general relation

ergy cost oftypical thermal excitations in droplet theory.

There are several ways to show this result. For simplicity, =6, +d\,. (18)
here we exemplify this relation by analyzing the |Gwbe-
havior of the second moment of the spin-glass order paral
eter at the order linear i by keeping only the first excita-
tion. If q;,, 1= (1V) X0 7; denotes the overlap between two
replicas (i.e., configurations of different systems with the
same realization of quenched disondéhen the expectation
value(q?) can be written d$

This relation shows how the value @&f can be computed
Mrom N\, and 6, . Through the study of a specific example, we
will see later that the exponeni and\ | have strong finite-
volume corrections arising from the corrections present in
the statistics of the extreme values. However, we will present
alternative routes to overcome this dependence and provide
an accurate estimate ¢t

Now we come back to the aforementioned argument at the
E end of Sec. Il B claiming that in the large-volume lin#if
2T/ must converge to the valued in the case of coupling dis-
(14) tributions with finite gap at zero coupling. The details of the
argument are shown in Appendix A. The argument has two
whereP(v,E) is given by Eq(2). A low-temperature expan- parts. First, it is proved that one-spin excitations provide an
sion of Eq.(14) (Refs. 19,18 up to linear order irT yields  upper bound for the LD, . Then it is argued that this upper
bound holds also for any finite-size excitatiqissich as two-
L 4T Y spin clusters, three-spin clusters, and s9. afle will see
(P)=1-— E gvlsv(O)v(V—v) (15) below how this result is supported by the numerical analysis
V2 o=1 of the data. Let us also note that this result, in a RESD
scenario(see Sec. Il B can be linked to the linear depen-
which shows that the Ieading behavior is determined by bOtl’dence of the Speciﬁc heat at low temperatures, a result
g, and the density of states at zero g%,[;(O). In thestan-  widely accepted, but that has been revisited recently in Ref.
dard droplet model, it is generally assumed that typical low21 to show that it has strong FVC due to the systematic FVC

energy droplets have an average sizeS,vg,~V of the  Present in the value of, . Inserting 6,=—d, Eq. (18) be-
order of the system sizésuch as those generated by DW COMes

perturbation and finite weight at zero gaf\(0)~1/L?
whered is the thermal exponent. In principle, a single expo-
nent 6 describes the scaling behavior of typical large-scal
droplets with volumev«V and determines the zero-
temperature critical behavior. As these large-scale dropl
are typical they occur with finitétherefore independent of
V) probability gy~ O(1) while small scale droplets are sim-
ply irrelevantg, _o(1)~0. This yields

_ 2 w
(9?)=1- V2 > fo dEP(v,E)v(V—uv)sechk

6=d(\,—1). (19

®rhis relation provides a way to distinguish the lower critical
dimensiond, cp in terms of the average size distribution of
®Hhe lowest droplets. According to Ed10) the relation
N\i(dicp) =1 distinguishes a regime where the average size
of the lowest droplet grows with the volume of the system to
a regime where the average size of the lowest droplet is

finite,
=1 T (16)
(@)=1-c5 d<dcp: imo(V)=o, \<1,6<0, (20
V—o
where ¢ is a nonuniversal stiffness constant related to the -
particular model. One of the most relevant results from the d>d cp: limov(V)=0(1), X\,>1,6>0. (21
ansatz(4) is that both small and large scale excitations con- Voo

tribute to low-temperature properties. In general, let us con-

sider any expressidisuch as Eq(15)] involving a sum over  The marginal cas&;=1,6=0 is specially interesting as the
all possible volume excitations. Restricting the sum to theaverage size could be finite or diverge with the size but
large-scale dropletso(V finite) the net contribution to such slower than a power law. This scenario corresponds to the
sum is proportional td/gyPy(0)cL =%~ ™P(0) [whereP  mean-field behavior as replica symmetry is broken in both
is the Sca"ng function appearing in E((1.3)] Coming back the standard RSE?ef 3) or in the triVial-nontriVia}’z (TNT)

to Eq. (15) and using Eqgs(4) and (13), we note that both ~scenarios. Therefore, the study of the size spectrum of the

small and large-scale excitations yield a contribution to Eqlowest excitations in spin glasses can be very useful to find
(15) of the same order and given by out the correct value of the thermal exponent in models with-

out a finiteT transition (such as the 2D GISGas well as

- establishing the correct low- scenario in models with a
(@)=1-¢———, (17) finite-T transition. In the next section we apply all these
Lotdy ideas to evaluate the thermal exponent for the 2D GISG's.
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Ill. STATISTICS OF THE LOWEST ENERGY DROPLETS tween the ground state and the first excitatiand the gajtc.
IN THE 2D GISG From these quantities we can construct the and the

Several numerical works have recently searched for lowP v(E)-_ .
lying excitations in spin glasses using heuristic algorit@fs. N Fig. 1 we showg(q)=(V/2)g, as function ofq for

But, to our knowledge, no study has ever presented exadlifferentsizes in the PP and FF cases. We can clearly see that
results about the statistics of lowest excitations. We havéhere are excitations of all possible sizes but, as discussed in

exactly computed ground states and lowest excitations itP€ paragraph following Eq(9), the typical ones which
two-dimensional Gaussian spin glasses defined by dominate by far are single spin excitations. To have a rough
idea of the number of rare samples giving large scale exci-

tations let us say that nearly half of the total number of
H=-"3 3. o0 22) samples have one-spin lowest excitations, whereas less than
= T 10% of the samples have lowest excitations with ovegap

the range 6-0.5. This disparity increases systematically
where theo; are the spins £1) and theJ;; are quenched with size. For the Iatti.ce.sizes explortid the typipal punjber of
random variables extracted from a Gaussian distribution of2/g€-scale droplets is in the range®#00> which is, in-
zero mean and unit variance. These have been computed ed, quite good to have a good sampling of the sector cor-
using a transfer matrix method working in the spin basisfésponding to large scale e>-<C|tat|0ns. A dgtalled analysis of
Representing each spins state by a weight and a graduatié® Shape of, reveals that it has a flat tail for large-scale
in the energy we can build expiicitly the ground state byex_mtatlons and a power-law dlver_gence for f|r_1|te-5|ze exci-
keeping the largest energy and, by subsequent iteration, ifgtions. Theg, can be excellently fitted by the interpolating
first excitation and so ofsee Appendix B for the details on formula[Egs.(7),(8)],
how we compute these quantitie¥he continuous values for
f[he couplings assures that the_re_z is no accidental degeneracy 9(q)= i A+ B ) (23)
in the system(apart from the trivial time-reversal symmetry VM (1—gq)M*?t
o— — o). Calculations have been done in systems with free . . .
boundary conditions in both directioBF), periodic bound- As ;hown n th(_a msetg of F{gl a good (_:ollapse of the
ary conditions in both directionéPP, and free boundary scaling function is obtained with the effective equnﬁﬁ‘f
conditions in one direction but periodic in the ott{&P). In =0.7 for both PP and FF cases. We also plot the line result-
all cases we find the same qualitative and quantitative resuli@9 from the fit of Eq.(23) with numerical data with the
indicating that we are seeing the correct critical behavior. following values forA and B: PPBC: A=1.55(3) andB

We have found ground states and lowest droplets for sys=0-7743); FFBC: A=2.02(3) andB=0.851). Note that
tems ranging fromL=4 up toL=11 for PP and up td thg fit is excellent an_d is hardl_y dlst_mgmshable from the
— 16 for FP and FF. The number of samples is very Iargepo'”,tsf- The value of, is compaﬂble with the one pbtalned
typically 1¢F for all sizes. The large number of samples as-bY fitting the average size with the expressia0) with the
sures us that many samples have large-scale droplets as fifgdition of a constant term to account for the smvattehav-
excitations. This provides us with good statistics to properlyior v=Cy+C,V**. The same exponent, can be esti-
analyze the sector of large-scale excitations. The large nunated by measuring the ratiog(V/2)/g(1)~D;
ber of samples requires a big amount of computational timet D,V ~1"*. In both cases we get an effective exponent
so that calculations were done in a PC cluster during severalfﬁz 0.70(5) as best fitting value.
months. For each sample we have evaluated the volume of However, these different estimates Xof are strongly af-
the excitationv (and hence the overlap=1—-2v/V be- fected by finite-volume correctionéFVC’s). To evidence
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FIG. 2. Effective lowest droplet exponemf‘ff versusL for the : =
PP case, computed using logarithmic derivatives. E

FIG. 3. Gap distributior?(E) versusE for different lattice sizes
in the PP case. In ins¢d) scaling obtained from the ansatZ3)
Yith 62"=—1.7(1). Ininset (b) we show theP,(E) for different
excitation sizes §=0.50=0) for a lattice sizeL=10. Note that
the distribution is independent of the size of the excitation.

them we have estimated an eﬁectiuedependean“(L)
exponent by relating the average excitation size at consec
tive sizes and using relatiofi0)

v(L+1)

v(L) preceding Sec. Il C and in the Appendix A. A calculation of
ML) =1- a7 L 1 (24)  the moments oP(E) (13 for different values ofL shows
In| —= that there are also strong sub-dominant corrections to the
leading scaling13) that result in corrections as large as the

ones affecting the exponent.
In Fig. 2 we show)\Fﬂ(L) in the rangeL =4—11 for the PP 9 P i

i / o Again, to manifest the magnitude of FVC & we have
case. As we can appreciate there is a systematic increase of

the effective exponent as we go to large volume sizes Withgvaluate(E(L), the first moment oP(E), obtained by av-

out any tendency to saturate. This proves that FVC in oufrading the lowest gap over all possible droplet sizes for

measurements are still big and the estimgtE used to col- different lattice sizes in the range=4-11. We have esti-

lapse the data in Fig. 1 is still far from the asymptotic exact][nﬁlteq an effectivd-dependent exponent by means of the
value. ollowing expression:

After having discussed thg, we jump now to discuss the

In

L

scaling behavior of the energy gap distributi®p(E) and its | E(L+1)

averageP(E). In Fig. 3 we showP(E) [main figure and n E(L)

inset(a)] and P,(E) [inset(b)] for the PP case. Similar re- or(L)= i1 (29
sults are obtained for the FF and FP cases. Quite remarkably, In| ——

as was already anticipated in E@.1), the RESD scenario L

holds as the distributioﬁU(E) does not depend on the size N .
of the excitation[see insetb) in Fig. 3], hence both large Tg? results are shown in Fig. 4 for the PP case. Again, as for

and finite-size excitations are described by the same gap did! (S€€ Fig. 2, we observe that the estimated value Gl _

tribution. systematically changes with size showing that, for the sizes
In the main figure we can see how the width of distribu-We have explored, we are siill far from the asymptotic

tion P(E) progressively shrinks to 0 dsincreases. More- €9IMe. _ _ . .

over, theP(E) has an exponential shape. This is shown in We can summarize the results of this section saying that

the inset(a) of Fig. 3 where we ploP(E) in log-normal  POth lowest droplet exponene DE's) \, and 6, display

scale. Nonetheless, a detailed examination of the tails ctrong systematic finite-volume correctioffsVC). In prin-

P(E) reveals some deviations from linearity. In Sec. VI we ciple, W|thou_t further elaboration, it is dlﬁlcylt to give an

discuss the origin of these deviations. We anticipate, thougtf:ccurate estimate for the thermal exponénising Eq.(18).

that they are consequence of the strong FVC in the range din alternative estimate for the exponeficould be defined

sizes investigated. In that inset we also verify the scalind’™ the analysis of the fraction of large-scale excitations

ansatz(13) by showing the best data collapse (E) ob- ~ With a=1/2, f(q=<1/2),~ which is given by

tained with an effective exponerﬂf“z—l.?(l). This is

very far from the expected valug=—2 discussed in the f(q<1/2~Vg(0)~INM "1~ d0=D—q/ ¢ (26)
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A4 : . . . 6°T(L) = 6F(L) + dNF(L). (27)

] In Fig. 5 (left pane) we show the value o obtained in this
way. Note that the value of the thermal exponéritasneg-
ligible FVC but relatively large statistical fluctuations with

A better, albeit related, way to estimatas the following.
Instead of independently finding ont and 6, we look for an
estimator which depends on the appropriate combination of
the two exponent®= 6,+d\,. The simplest quantity which
satisfies this requirement is given by the combination

E(L
| A(L)=Ld_(—). (29)
v(L)
B 7 % 9 SinceE(L)=L" andu(L)=L%"N) using Eq.(18) we ob-
L tain A(L)~L’ To estimate the value of we follow two
B . B eff
FIG. 4. Effective droplet exponerd™ versusL for the PPBC dlf'ferﬁent routei(l) We use Eq.(25)' by repla'cmg or(L)
case, computed using logarithmic derivativese text —6%(L) and E(L)—A(L). By definition, this procedure

gives exactly the estimat@7) shown in the left panel in Fig.

_ . 5. (2) A more stable estimate can be obtained from a fit of
where we have useé d (19). Although Eq.(26) yields A(L) versusL, with data in the ranggL. . . . L= 11] (for

estimates forf, again these are affected by strong finite- g . .
volume corrections. In the range of sizes studied in this pa%?)ee?hzl?sw&atsﬁe-rhrIZvli?)usshg\;\fcinml:;@j[;])ea:]edﬂarl):lon?rwl t?}fe':rligh§
per, and using Eq26) we getf#=—0.6 quite far from the 9 P 9

asymptoti value repored later in Secs. IV and V. How carf ST 0/ T80 UL R SORRRER R T2 ST SO
we go further and estimat2in a safer way? In the next two pw ‘

sections we shall answer this question. value for ¢ is

6=—0.461). (29
IV. A GOOD ESTIMATE OF THE LOWEST DROPLET This value is very close to the finite-temperatuidonte
EXPONENTS Carlo or transfer matrixestimate® = —0.48(1) (Ref. 15

but cert;aénly smaller than the domain-wall valufg,,=
-9 . i . —0.285.° Our estimate forg is compatible with the other
nents shqwn n F|gs. 2 and 4 is tha_t, Wh"e thelr_ FVC arepossible value)+r obtained by other methods as discussed in
large, their _corregftfmns are of opposite sign. WHIE'(L)  gec. | put is certainly inconsistent with the value obtained
increases with., 6"(L) decreases. As they have to be added,yith other methods with results closer to the DW estimate.
to get # according to the relatioril8) their finite-volume All these estimates strongly support the inequality
corrections cancel out to a certain degree. If we combine the. 0re<6Opy. However, one cannot exclude a situation
two estimatgs for the best f(%iata collapse given in the previoughere the present tendency of the data gets modifieddand
section [\"=0.70(5), 6"'=—-1.7(1)] we obtain 6= g in the largek limit.25 We have already explained in
—0.3(2), which is very close to the DW value in average. sec. || C thatg, must converge to-2 in the large volume

But since the error om is so large, this estimate is not Very Jimit implying the relation (19). Introducing our estimate
useful. A better route would be to use the two LDE's esti-(29) in Eq. (19) we get

mated from Eqs(24),(25) and adding them according to Eq.

An interesting aspect of the effectitedependent expo-

(19 N =0.7705). (30
0.4 — W * T ¢ T ¢ T &= [ T T ¢ B S B e B
szl ] r */‘\"/‘\“I ] FIG. 5. Exponentd for the
—03 [ ] PPBC case. Left plotd exponent
-0.44|- - C ] versusL obtained from two meth-
C ] ods. Method 1: using Eq(27).
oser 1 °%F g Method 2: using the more stable
D il 4 = [ estimate fitting(28) over a given
-0.4 - range ofL values(see text Right
05 - plot: Domain-wall exponenttop)
_0_52’_ o o 1 pasl \_4_{/(_—{ N and ¢ exponent (bottom esti-
| G-osum 6, +dA, | C 1 mated by the second method as
-0.54|- safit A(L)in[LL =111 - L | | ] explained in the text and plotted
— L s e e 8 1 as a function oL.
L

184421-8



STATISTICS OF LOWEST DROPLETS IN TWAQ ..

PHYSICAL REVIEW B 67, 184421 (2003

100 57T FPBC, L8, Ret ——— PPBG, Lod
E ST J— [ (e 1
i 10 L=6 -------- 3
[ 3 I
10 |
Cs F T 1F
> = E
TE 0.1 F
0.1 Lomswnu 0.01 Ll i
0.01 0.01 0.1 1
1-q 1-q

FIG. 6. g(q) versus *-q for the FPBC forR=1, 5, and 10 and
for L=8.

FIG. 7. g(q) versus 1-q for the PPBC case forR=10.

ous linear size& and for the PPBC case. These distributions

A convincing proof of the correctness of the valii29),(30)  have been obtained by running a large number of samples
requires proving that the estimg@4) converges to the value ranging from 10 million of samples foL=4 down to 5
(30) whenL— . In the next section we present an aspect-million for the largest sizd& =9. We have also inserted in
ratio analysis to evidence that the estima(29),(30) are the figure two vertical lines which indicate the limits for the
correct in the large. limit. range of values we have chosen for the fits of the scaling
behavior of the finite-size excitation sector{#=0.07) and
for the constant contribution corresponding to large scale ex-
citations (1-q=0.25). We have chosen these values for the
following reasons. First, as one can clearly see in Figs. 6 and

In this section, we present some additional data obtained, the scaling region for small excitations survives up to
via an aspect-ratio analysi®&\RA). This analysis has been excitation sizesv=LXL. This size provides a threshold
proved to be very useful to extract the value of the domainvalue for the overlapyy, below which the simple scaling
wall exponentdp,, by generating domain walls in rectangu- g9(q)=1/(1—q)** does not hold anymore,
lar latticesM X L with different aspect ratios!/L.2% It has
been found that, in the limit of large aspect ratio, the value of
Opw for Gaussian spin glasses is largely independent of the

boundary conditions. We have seen in Sec. Il that our meaéecond there is a crossover region arognd,. A careful
surements on squared lattices of siz& L mix small exci- ' 9 qRd -

tations with large ones so one does not have a clear-cut seplfg—Ok at Fig. 7 shows that the scaling region for small excita-

ration in the statistical distribution between the two different'o"'S ends around-1q=0.07. At this yalue, one obseryes a
regimesv~O(1) and v/V~O(1). Our main motivation change of the slope of the curves just before entering the
here is to show that, by investigating large aspect ratios, wi eglmle: Oflliirgi g);cnatrl]ons whe{q) beﬁomesq mdepend- h
can separate these two different scaling regimes. We ma nt. For q=". 5, the curves are rather constan; and the
our measurements on systems of sizeM, with M=LR result of a fit does not depend much on the choiceql
>L whereR ranges from 1 up to 10. We ’have investigated:0'25' This second threshold value is indicated as the right-
different types of boundary conditions: periodic boundarymolSt I\:/_ertlgal bar r']n FIgH 7. . d val f effective |
conditions in both directionPBQ and periodic boundary n Fig. 8, we show the estimated values of effective low-

eff . . .
conditions in the. direction with free boundary conditions in €St droplet exponent™ obtained in three different ways.
the M direction (FPBQ). The first estimate has been obtained by averaging the volume

In Fig. 6, we display the data fay(q) versus -q (8) for of all excitations for different lattice sizes as explained in
the FPBC case fot. =8 andR=1, 5, and 10. One can Sec. lll and then taking a logarithmic derivative, see Eq.
clearly see that the behavior of the distributigfy) drasti- (24 The second estimate has been obtained by considering
cally changes as one increagedndeed, as we have already (e large excitation sector {19=0.25) and its,R depen-
seen in Sec. Il and in Eqs5), (6), and(8), for R=1 itis  dence
very difficult to separate the region of small excitatidias _ 20—
scaling region withg(q)=1/(1—qg)M*?!) from the one of g(q)=(RL%) . (32
large excitations(a constantg-independent contribution Averaging the excitation volume within this sector-{f
g(g)=1/VM). The main advantage of separating these two=0.25) and using again the corresponding logarithmic de-
regions is that one can directly fit each of them. This yieldsrivatives as in Eq(24) yields the second estimate. The third
two separate measurements of the LDHnN addition to the  estimate fon, is obtained from a direct fit of(q) for small
estimate(10) obtained from thé. dependence of the average values of 1-q:
size of the excitations.

In Fig. 7, we showg(q) versus - q for R=10 for vari-

V. ASPECT-RATIO ANALYSIS OF THE LOWEST
DROPLET EXPONENTS

~ = (31)

g(q)=(1—q) * ™. (33
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eff

0.65 — / - FIG. 9. Effective exponenl9|Eff obtained via a logarithmic de-
S 1 rivative for the PPBC and the FPBC. We also plot best fit curves
I which converge tof°f(L—o)=—1.96(6) for the PPBC and to
4 5 6 - 8 9 6f"(L—o0)=—2.12(11) for the FPBC.
L

) . best fit being also represented in Fig. 9. In this figure, we
FIG. 8. Effective lowest droplet exponenf™ versusL for the 3150 show the same exponent obtained for the FPBC, where
PPBC case foR=10. We represent the values af" obtained the best fit yields the asymptotic Valueeeff(oc)
from fitting the distribution ofg(q) for small excitations(solid =—2.12(11). In both cases the fitting value we cl)btain for
line), for large excitationgshort dashed line as well as the value the e;( onent' isv~1. Note that the asvmptotic values for
obtained by fitting the average size of excitatigdstted ling. off P o . . y X
0;" are well compatible with our prediction of Sec. Il @,

This third method is in fact the most direct one since it can —2 (see also the heuristic argument in Appendjx A

be done for each size (while the other two estimates re-
quire a fit using data from two different lattice sizesand
L'). The first conclusion that we learn from Fig. 8 is that the
ARA produces a great improvement on the estimated values
of the exponenk, . The most stable measurement is the third  \what is the origin of these strong finite-volume correc-
estimate obtained by f|tt|f|?g the small-size spectrum of thgjons? Intuitively it is not difficult to find an explanation for
excitations. In that case," is nearly constant with a value the strong systematic finite-volume corrections in the lowest
that converges to droplet exponent, . As the wordlowestindicates, these ex-
ponents describe the statistical distribution of droplet excita-
N=0.771) (34)  tions which are at the tail of the energy gap distribution that
_ _ . includes all possible high energy levels. As the volume of the
in excellent agreement with the res(80) of the previous  system increases there is more available space to find exci-
section. o tations with lower energy gap. This implies that there is more
Moreover, one also observes in Fig. 8 that the two othepopability to find a lowest droplet with an energy smaller
estimated values fax{", obtained with the first and second than a given threshold valug* and therefore the average
methods, are strongly correlated. This shows that finiteenergy of the lowest droplet is expected to decrease with
volume corrections, which are expected to affect the value oHowever, this simple fact does not give any intuitive indica-
the eXponent obtained from the analySiS of Iarge-Size EXCitE‘jon of how the effective exponen&ﬂf(L),)\le‘ﬁ(L) System_
tions, dp affect also the value of the exponent obtained bkétically change witH..
averaging over the whole spectrum. In addition, we also ob- 1o ynderstand the origin of finite-volume corrections in
serve that the ARA for larg® strongly decreases the mag- the value ofg, we have focused our attention on the behavior
nitude of finite—yolume correc'f[rions. While on a square geomsf the ypper bound exponer describing the statistics of
etry, the effective exponentj™ obtained from the average the |owest one-spin excitations as described in the Appendix
size of excitations took values in the range G-3262(see A The gap distribution corresponding to these excitations
Fig. 2), with the ARA, we obtain for the same exponent can pe obtained from the local-field distribution evaluated at
values in the range 0.640.72, which are much closer to the the ground state. We have numerically computed this distri-
expected asymptotic value 0(Z7. bution for different sizes, the results are shown in Fig. 10. As
The same conclusion holds for the lowest droplet expogiscussed in Appendix A, the local-field distribution has a
nent . In Fig. 9, we show the effective exponesfl” ob- finite weight at zero field and is a self-averaging quantity. As
tained by evaluating the logarithmic derivative as in ).  the local-field distribution is self-averaging, the probability
Note that finite-volume corrections are much smaller thanjistribution for the lowest one-spin excitations corresponds
with the squared lattices and as a result, the value of they the extreme value statistics of the local-field distribution
effective exponent converges much faster to the expecteg, (h) whereh stands for the local field which we assume to
value —2. Using a fit of the form ¢f"(L)=6%"(=)  be positive as the gap is given by its absolute valihe
+constL“, one getsefﬁ(oo)= —1.96(6) for the PPBC, the subindex 1 is used to stress that this distribution describes

VI. FINITE-VOLUME CORRECTIONS (FVC) AND THEIR
RELATION TO THE STATISTICS OF EXTREME
VALUES
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04 - | ' ' In the largeV limit g;(x/V)—p;(0) and the coefficient in

front of the Gaussian correction goes asymptotically to zero,
therefore the distributio?,(h) converges to an exponential
_ as expected,

03

P1(h)=Vpy(0)exd —Vp,(0)h] (39

in agreement with the scaling relatiqi3). We can now
understand the deviations from the pure exponential behavior
discussed in Sec. Il in the context of the inéa&t shown in
Fig. 3. They are simply consequences of the finite-volume
- corrections of the extreme values of the gap distribution for
all energy levelgand not only one-spin excitations as we are
discussing hepe However, moving our discussion from the
. . . . one-spin case to the absolute lowest excitation distribution
0 2 4 6 8 10 P(E), we do not have a clear physical insight about what the
h corresponding distributiop(E) should be. In other words,
while p,(E) is a self-averaging distribution witR,(E) be-
ing its extremal value distribution, we do not know how to
construct a self-averaging(E) that yields theP(E) we are
numerically evaluating. Still, from thB(E)’s shown in Fig.

J

o
L L | 1 o |

a4 2000oNO1A~

nND—=O

0.1

FIG. 10. Local-field distribution for different lattice sizes with
FFBC boundary conditions.

energy gaps for one-spin excitations onlif P,(h) stands , .
for the probability distribution of the smallest local fields, 3+ the parameterp(0),p’(0) that characterize suchE)
thenP,(h) can be easily related o,(h) by standard prob- €an be evaluateq. To_ ev_alugte them, ihe best way is to ana-
ability arguments(see for instance, Ref. 26Although the YZe the cumulative distributio(E) = Jed E'P(E’) which
argument is very general, here we apply it to one-spin exciffom Eg. (36) we can assume to b2(E)=ex{ —~Vgy(E)].
tations. For a given sample, the lowest vahiis selected as Thus we can fitP(E) with an exponential with Gaussian
the minimum value among all the possibidocal fieldsh, at ~ correctionsA exyf —Bx—Cx/2] whose fitting parameters are

each lattice site. The probabilitf;(h) is given by the ex- related top(0) andp’(0). Thebest fits yield the following
pression values:p(0)=~0.2 andp’(0)=0.3.

Coming back to our original goal we discuss now the

o v-1 finite-volume corrections for the estimaé", as shown in
Pl(h)=Vp1(h)( 1- fh Pl(h')dh') Fig. 4. From the distributioi36) describing the whole spec-
trum of excitations we can express the effective exponent
p % v (25) for L>1 as
:_%(f p(h’)dh’) (35 -
" < dIn[E(L)]
(L) = ——~— (40)

which accounts for all possible ways the valueoincides dln(L)

with the minimum value obtained among all differantocal . — i ) ) _
fields distributed according to the,(h). The last identity "€ computation ofE(L) is quite straightforward as it is

shows thaiP, (h) is normalized. This probability can be ex- 9iven by the simple relation
plicitly worked out in the large/ limit

E(L)zf:EP(E)dEz f:dEexq—Vg(E)], (41)

J
Puh)==zrexd ~Va(h1=Va(hexd ~Va(h]. where we have used E36) plus an integration by parts.
(36  The integral, up to second order inviyields

Up to second order ih the functiong,(h) is given by = 1 B p'(0)+[p(0)]2 i i
, 2 TVR0)  \Vp0)T° v 2
RSP (0 (V) - P
9 =p1 2 ' Inserting this result in Eqi40) we finally get
From Eq.(36) we immediately learn that the gap distribution p’(0)
is an exponential with a sub-leading Gaussian correction 6?“(L)=—d+v +[ (0)]2 + @ : (43)
p

whose magnitude decreases asV/.1l/Actually, plotting
P1(h)/V as function of the scaling variable=hV one gets  This shows thateleﬁ(L) approaches—d from below [as
, 5 p’(0) is positivd. On the other hand the magnitude of the
Py(h) | Y 0 P1(0)+[p1(0)]° , finite-volume corrections can be pretty large if
v~ 9i(x/V)exg =xpy(0)~ 2V ) p’'(0)/[p(0)]?>1. For instance, if one takes the results ob-
(389)  tained from the analysis of one-spin excitations one gets
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12 - | - . - example, one could use the gyration radius, the average dis-

- 1 tance between the sites contained in the cluster, or the maxi-

A3 . mum distance among the sites of the cluster. As the typical
L & | length scale of our lowest droplets is smék 10, we have

sal i Y i not attempted to estimate it as this can strongly depend on

I ?ﬁt\\f | the precise definition of the spanning length. Here, we re-

B b - S strict ourselves to investigate the perimeter-volume depen-
e S dence. In terms of the spanning lendtthe surface fractal

and volume fractal dimensionds,d, of the droplets are

16 defined as
= - N
il aalowest oxeitation FFBC - |~ P, (44)
‘1'84: ' : ' s ' 0 ' 1—2 et “
L which combined give
FIG. 11. Effective droplet exponem™ versusL for the FFBC P~pls/dy, (46)

case, computed using logarithmic derivatiese text We show . . .
the exponent obtained for one-spin excitations=(L) in compari- In Fig. 12 we showP(v) as a function ofv for different

son to the one obtained from the whole distribution of gaps. lattice sizes. As can be seen, FVC are important for large
volumes. However, there is an enveloping curve that is inde-

pendent ofL for small volumes and spans a progressively
increase range of volumes &sincreases. This enveloping
curve is excellently fittedcontinuous curveby the scaling
relation (46) and yields an estimate

p1(0)=0.069, p;(0)=0.125 yielding p;(0)/[p,(0)]?=27
which is indeed large. Inserting these values in &§) we
obtain an estimation foﬁfﬁ(L= 12)=—1.65 in good agree-
ment with numerical result&see Fig. 11

If we insert the previous estimated values for the whole de
spectrum of excitations extracted from tRE€E)’s in Fig. 3, d—:0.632{2) (47)
we obtainp’(0)/[p(0)]?=7.5. From Eq(43) it follows that v
efﬁ(L): —2(1-7.5V), which for L=11 yields Gleﬁ consistent with the results reported by Kawashima and Aoki,
=—1.87. All'in all, the magnitude of the effective exponentds/d,=0.61(1), obtained with a completely different
0, is well compatible with the reported valﬁff used in the method.
inset(a) in Fig. 3 for the PP case. Note that the FVC correc-

tions to 6" obtained from the local-field distributions in the VIIl. CONCLUSIONS
FF case are much larger than FVC corrections in the PP case o
in agreement with ARA result&ee Fig. 9. From this analy- We have shown that a proper description of low-

sis it becomes clear that to significantly reduce the magnil€mperature properties in two-dimensional Gaussian spin
tude of the finite-volume corrections in the valueéoflet us glasses can be done in terms of the lowest droplet exponents

say 6,=—1.95), we would need larger volumes beyond (.LDE's) N anq 6, describing the spe.ctrum of lowest excita-
20 20. tions.\, describes the spectrum of sizes of the lowest energy
droplets, whiled, describes the typical energy cost of these
lowest droplets whatever their size. Assuming that —d
VIl. COMPACTNESS OF THE LOWEST ENERGY one concludes that the LDK,; fully characterizes the spin-
DROPLETS glass phase. Although independent numerical estimatég of
o . — and \, show strong finite-volume corrections, the thermal
One |nt.r|gumg qu.est|on abou_t the droplet _excnatlons Co.n'exponentaz 6,+d\, can be well estimated giving the re-
cerns their topological properties. Kawashima and Abki Its (29),(30)
have argued that droplet excitations are not compact. InsteaafJ S(29(
the_ir vc_)lume ha_s a fractal structure as th_e numbe_r of lattice 9=—0.461), \=0.7705), (49)
points included in the droplet scales with its spanning length
(which is a measure of the length scale of the dropléth ~ showing that < 6= —0.2874).1! Our estimates(48)
an exponent smalldaround 1.8@®)] than the dimension of have been confirmed via an aspect-ratio analysis which pro-
the systen(2). vides estimates much less influenced by finite-volume cor-
To answer this question we have computed the surfaceections. Moreover, the resulf= —2 (that is believed to be
i.e., the perimeteP, of all lowest droplets. The relation be- correct for spin glasses with coupling distributions with finite
tween the average perimeter as function of the siz# the  weight at zero coupling, see the Appendix Bas been nu-
excitation depends on both the fractal dimension of the surmerically confirmed by the aspect-ratio analysis. To sum up,
face or perimeteds and the volumel, of the lowest drop- McMillan’s excitations are not the typical low-lying excita-
lets.ds andd, can be defined in terms of the spanning lengthtions and our approach offers a new and independent way to
| of the droplet which can be defined in different ways. Forestimate the thermal exponehivithout the need to generate
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certainly required to understand better the reliability of the
present method to investigate the critical properties of spin
glasses. One disadvantage of our approach is that a huge
number of samples is needed to reasonably sample large-
scale excitations. However, as we saw in Sec. V, the behavior
. of the g(q) for small 1-q can be extracted with a modest
number of samples. The advantage, as has been already
N stressed in Sec. |, is that we do not introduce any external
perturbation to generate the excitations.

Finally, we want to comment on the extension of this
approach to other models. Of course, the immediate exten-
sion one could think of is the 2B3-J model. However, the
analysis of this model appears quite troublesome. This model
does not have a continuous gap distribution but a discrete
0 —t L 1 one that introduces further complications. As the ground
0 10 20 30 40 50 60 . . X .

v state is not unique, one has to redefine the full analysis to
) ) properly define the spectrum of lowest excitations. The dis-

FIG. 12. Perimete(P) of the droplet versus its volume). The  creteness of variables could have some unexpected effects in

solid line corresponds to the ##6) with ds/d,=0.6322). the present approach as seems to happen also with domain-

wall calculations!! It is more natural to extend the research
typical low-lying excitations by looking at the new ground to other models such as 2d ISG with other continuous cou-
state of the system after perturbing it. pling distributions without gage.g., characterized bip(J)

We think that discrepancies on the value of the thermak|J|* for |J|—0], Migdal-Kadanoff spin glasseévhere
exponentd reported by comparingonperturbativenethods  both the ground state and the first excitation could be feasi-
(such as finite-temperature transfer-matrix calculations andly found with an appropriate algorithmGaussian spin
the present lowest droplet analyswith perturbative meth- glasses beyond=2 (where unfortunately, algorithms are
ods such as domain-wall calculatior(sr perturbations in- much less effective than in 2D as the finding of the ground
duced by introducing a coupling term in the energy functionstate becomes a NP complete probjeamd finally mean-
that induces a large-scale excitati@ne serious enough to be field spin-glass models where the zero temperature expo-
taken as a clear indication that our knowledge of the low-nents are known and maybe the spectrum of lowest excita-
temperature properties of the 2D GISG is still inadequate. Iions could be analytically tackled. Preliminary results in this
this direction we want also to recall the issue of multifracta-casé’ confirm that the present analysis describes pretty well
lity and the possibility that different exponents could de-the data for rather small sizes. We are pretty confident that, in
scribe the zero-temperature critical point. Is this really posthe near future, new results and evidence will finally resolve
sible? Well, to our knowledge no exact result precludes thighis interesting problem.
possibility and, although purely speculative at the present Note added after completion of this work: While this pa-
stage, one should seriously think about it. Altogether, theper was submitted, Hartmann and MoSrénave reported
present analysis suggests that the excitations in 2D GISGsome results in 2D Gaussian spin glasses where they gener-
are very different from the compact droplets proposed in theite large scale excitations by a perturbation technique where
context of the droplet model. If this were true, the implica- they fix some spins in the lattice and generate the smallest
tions of the 2D studies in larger dimensions could be imporenergy droplet. They show that the thermal exponent takes
tant. There are many routes that can be followed to undetthe value —0.47 for sizesL=<20 and crosses over to the
stand better what is going on and the origin of thisvalue —0.29 for larger sizes. They interpret these data as
discrepancy. Certainly, with the outstanding accuracy ofvidence that-0.46 only holds in the small regime. How-
present algorithms to compute ground states in 2D, it woulaever this interpretation needs to be taken with caution be-
be very interesting to revisit the analysis of the statistics ofcause of two following reason$l) Their data and our data
the large scale excitations generated by imposing a uniformover different regimes: the typical energy of the droplets is
magnetic field. “Old” results by Riegeet al® give an esti- much different in their approach than in our approach, their
mate for@ that is compatible with our estimate rather than toenergies being at least one order of magnitude larger than
the domain-wall estimate. This would be an independenours, hence extrapolation of the finite-size effects they mea-
check of our values, but using a perturbation method with arsure to our energy scale is not obvious at &). Their data
appropriateneutral observablsuch as the global magnetiza- can be interpreted in the opposite way: for small sizes their
tion as has been explained in Sec. | before @g}. excitations are indeed typical and scale properly with the

The proposed method may appear venturesome as, to oakponent—0.46, however, for larger sizes their droplets are
present knowledge, there is no numerical study in the fieldot typical anymore since their perturbation does not prop-
along this line of research. However, as explained in Sec. lerly select them(as we have reasoned along this paper
recent studies on the disordered Anderson nf8delve re- therefore they overestimate the energy of the typical ones
vealed that the analysis of the lowest excitation provides @iving a value of the thermal exponefitompatible with the
good description of the localized phase. More studies ardomain wall estimate. Which one is the correct explanation
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cannot be decided at present, however, we are confident theg¢lf-averaging. This argument, however, cannot be extended
measurements for larger sizes using our method should rée large-scalgwith v~V) excitations in a straightforward
solve this issue. way because the distribution for the corresponding gap dis-
tribution corresponds to an infinite sum of terms in e
ACKNOWLEDGMENTS —oo limit. However, once we argue thaf is an upper bound
valid for all finite-size excitations it can be concluded that
We are grateful to J.-P. Bouchaud, D. Huse, O. Martin, M.this upper bound must coincide with the exponéndescrib-
A. Moore, and A. P. Young for useful comments. We haveing the probability of the absolute lowest excitations. From
been,supported by the Spanish Ministerio de Ciencia y TecEq. (4) the fraction of large scale excitations—V is given
nologa, Project Nos. BFM2001-3526-R,) and Grant No. by Vg,=1N". In general\>0 so this fraction vanishes
AP98-3652387%M.S.). M.P. and F.R. acknowledge support (this fraction is finite only ird=1 where\ =0, but this case
from the French-Spanish Collaboratigificasso program s trivial as the surface of large scale dropletsdin1 con-
and Acciones Integradas HF1998-009Funding from the tains only a finite number of broken bonds the infinite-
European Science Foundation through the SPHINX programolume limit and finite-size excitations determine the result

is also acknowledged. 6,= —d as they dominate the spectrum of lowest excitations.
Moreover, if large-scale excitations yield a different value

APPENDIX A: HEURISTIC PROOFE OF THE IDENTITY for 6, this would imply that boundary conditions could affect
0,=—d the value of the thermal exponent. That would be quite un-

usual as this would mean that the exponents of el

In this appendix we show that=—d. In what follows  fixed point would depend on the boundary conditions.
we do not attempt to present a rigorous proof but we content
ourselves to present an heuristic argument. The argument has
two parts: first we show that d is an upper bound, next we APPENDIX B: TRANSFER MATRIX ALGORITHMS
show that the upper bound is the exact value. For the upper |n this appendix, we will briefly explain how we deter-
bound the argument is well known and goes as follows. Conmine the ground state and the first excited state. We will
sider the ground state and all possible one-spin excitationgyork on a square lattice of sizex L. The energy associate

Because one-spin excitations are not necessarily the absolug 5 configuration of spin§(i,j) with a fixed configuration
lowest ones, the statistics of the lowest one-spin excitationgs gisorderd*(i,j) andJ¥(i,j) is

must yield an upper bound? for the value ofg,, 6,<6;.
The statistics of the lowest one-spin excitations is deter-

mined by the behavior of the ground-state local field distri- E= > > Ji.j)s(i.p)Si+1,)

bution p(h) in the limit h—0. If p(h) is self-averaging and =l-l=iL

p(0) is finite (in the large-volume limjtthen the statistics of +_2 _ > WG3,j)S(,))S(L,j+ 1)

the lowest excitations must be governed by the exponent i=1L j=1L-1

0,1= —d. Although we do not know a precise mathematical 1 . .

proof of the statement thgp(0) is finite, it looks quite +Bl-§y,_ LSS

intuitive®® In any short-range system with a frustrated

ground state and a coupling distribution with finite density at +B, >, JV(i,L)S(i,L)S(i,1), (B1)

zero coupling, we may expect a finite probability to find a =1L

cage containing a spin coupled to its neighbors by a set of

weak bonds which produce a vanishing net local-field acting?1€"€B1 andB, correspond to the choice of boundary con-
on that spin. This argument should generally hold €or ditions. Here we will consider three cases : Periodic-Periodic

=2. Moreover, as its name indicates, the local-field distribyoundary - conditions (PPBC'S with B,=B,=1, free-
tion is a local observable. An argument in the manner ofPeriodic boundary condition=PBC'S with B,=1, B,=0

Brout proves that it should be self-averaging as all possibl&°" equwalent,lyBlzo, B,=1), and free-free boundary con-
local field values are realized across the whole lattmer  ditions (FFBC'S) B, =B,=0. We will only consider the case
numerical results in the 2D GISG confirm this conclusion, With @ Gaussian distribution of the bond disordéyJ”. To

see Sec. VIl The next part of the argument consists in proV_determme the ground state and the _f|r_st excne.d states, we
ing that an identical upper bound is valid by consideringProceed as follows: we start by associating a weight for each
excitations with size strictly larger than 1 but finite. The up-configurations of spins in the first row of the lattice
per bound derived for the one-spin excitations must neces2(1,1).5(1,2), ... . S(LL):

sarily hold for finite-size excitations beyond one-spin excita-

tions (for instance, two spins, three spins, and s¢ as the W[S(1,1),5(1,2), ...,5(1,L)]=B,JY(1,L)S(1,L)S(1,1)

gap corresponding to the finite-size excitations can always be

written as a linear combination of a finite number of local + > (L)S(Li)S(Li+1). (B2)
fields with coefficients which depend on the ground state i=1C-1

configuration. It is easy to verify that the aforementioned

properties of the local-field distributiop(h) imply that the  Next, we start iterating the transfer matrix using a sparse-
new gap distribution has a finite weight at zero gap and isnatrix factorizatior’ The first iteration gives
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WYS(1,2), ...,5(1L),5(2,1)] WA(i,1) —W2(i,1) + B,J¥(i,L)S(i, L) S(i,1); WA(i,1)
= maxg1 11 J%(1,1)S(1,1S(2,1) —WA(i,1) +B,JdY(i,L)S(i,L)S(i,1). (B12)
+W[S(L1,D, ..., S(1L)]}. (B3)  We still have to take in account the boundary condition cor-

Since we are also interested in the first excited state, W%espondlng toB,. The two types of boundary conditions

define the second largest weight free and periodichave ftc_J be considered separately..
Free boundary conditioB,;=0. In that case, we iterate

W2[S(1,2), ...,8(1L),5(2,1)] up to the construction of the weights associated with the
) configurations of the spinS§(L,1), ... S(L,L). The energy
=ming; 1{J*(1,1S(1,1)S(2,) of the ground stateH,) is then simply the maximum among
H 1 .
+FW[S(L,D), ... S(LL)]). (B4) all the weightsw+(L,1):
In the following, we will use the simplified notation Eo=maxsq 1), ... S(L'L)}[Wl(L,l)]. (B13)

W(i,j)=W[S(i,j), ..., S(i,L),S(i+1,), ..., S(i+1,] We call {S°(L,1), ... S°(L,L)} the configuration of spins
on the last row for the ground state. The energy of the first

~DI: (BS)  excited state is the second largest weight amuvigL,1)
Thus Egs.(B3),(B4) become andW?(L,1):
WH(1,.2)= ma>(8(1,1)[‘]x(1’1)8(1'1)5(2’1)+W(1’1)]( | Ex=maxmaxs 1, ... sLL)}#{OL), ... L)}
B6
and X[WHL, DT, maxs 1y, . s WAL}
(B14)

W2(1,2) =ming;; 1y J%(1,1S(1,1)S(2,1) + W(1,1)].
(12 saaf (LD DS2D (1.0] (B7)  Periodic boundary cad®, =1. We first choose one configu-

o , _ _ ration of spins on the first ro®'(1,1),S(1,2),...,S(1.L).

At the next |t¢rgt|0n, the numbers of possible weight will T1,¢ weight of this configuration is defined as in EB2).
again be multiplied by two but we will keep only the two The weight of all the other configurations of spins on this
largest ones defined as first row are fixed to an arbitrary large negative number.
1 _ X Next we iterate the transfer matrix as described above, up

WHL,39) =marg1 o[ J'(1,2)8(1,25(2,2) to the construction of the weight&/*(L,1) and W?(L,1).

+JY(2,1)S(2,1)S(2,2+W4(1,2] (B8) Finally, we iterate one additional row, with bond$(L,i)

and JY(L+1,)=0. Next, we store the two weightg/*

W2(1,3)=max{mins(l,z)[\]x(1,2)S(1,2)S(2,2) and W? associated to the initial spins configuration
S$(1,1),9(1,2),...,5(1L). We denote these two weights
+3Y(2,1)S(2,1)S(2,2+W*(1,2], (B9) by
mavs(12[ J(1,2)5(1,2)S(2,2) WYS(1,1,5(1,2, ... S(1L)]
+J¥(2,1S(2,1)S(2,2 + W3(1,2)]}. _
o _ =W S(L+1,1)=S(1,1),S(L+1,2
The general iteration relations are _ _
. . . o =S(1,2,...,S(L+1L)=S(1L)] (B15)
WA(i,j)=maxg j— [ I*(i,j —1)S(i,j —1)S(i+1,j—1) | ' _
(I +1j—2)S(i+1j-2)S(i+1j—1) WAS(1,D,8(1,2), ... S(1L)]
+WH(i,j - 1), (B10) =WZ[S(L+1,1)=5(1,),S(L+1,2)
WA(i,j)=maxming; ;- 1y[J*(i,j —1)S(i,j —1)S(i + 1, —1) =5(1,2,...,S(L+1L)=S(1L)]. (B16)
+J(i+1j—2)S(i+1,j—2)S(i+1,j—1) The energy of the ground state is the maximum on all the
1.
+W(i,j—1)], e
mag - 3[3X(1,] ~ 1S, j— 1)+ 1~ 1) EOZma"‘S‘fJ?’“-S‘“}) |
F(i+1j-2)S(i+1,)—2)S(i+1j—1) {WIS(1,,8(12, ... SALI, (B17)
WAL~ D)L and we denote b$°(1,1),...,8°(1L) the configuration of

spins on the first row for the ground state. The energy of the
In addition, each time that we end the construction of a newiirst excited state is the second largest weight among
row, we must add the boundary term WL(L,1) andW?(L,1):
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E;=max{maxsi1y), ... S (L)1), ... LLL)

Cs(ij-1), ... S(i+1j-2)
x{W's(1,1,5(1,2,...,8(1L)]}, (B19 =[S(1,1), ...,5(1L),5(2,1), ....,3(i,j—2)].
MaxXs(1),... @} (B20
XIWS(1,1,5(1,2, ....S(1L)]]. (B9 At the next iteration, we will build the weightv*(i,j) with

the corresponding configuration
The construction of the ground state and of the first excited

state is much more costly in computing time for the periodic
case, since we have to repeat @mes the iterations, one
time for each configuratio®'(1,1),5'(1,2),...,S(1.L).

So far, we have only described how to compute the valuevith S(i,j —1) the value of the spin which corresponds to
of the energies associated with the ground state and the firfie maximum in Eq(B10). From this construction, we have
excited state. Since we also want to determine the spins comccess to the spins configurations of the ground state and the
figurations for these two states, we have to store, at eaclirst excited state.
iteration of the transfer matrix, the value of the spin on Finally, we should also add that this construction can be
which one sums, as well as the value of the previous spingasily extended to the second excited state, etc. After Eq.
Thus, for each 2 weightsW(i,j—1), we have to store the (B9), we can easily define a third weight which would be
configuration associated to the second excited state, and so on.

..... Si+1j-2),(1,]—1)]
(B21)

CS(i,j), ...,S(i+l,j—1):[CS(i,j—1)
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