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Abstract. Integrative approaches to the study of complex systems demand that
one knows the manner in which the parts comprising the system are connected.
The structure of the complex network defining the interactions provides insight
into the function and evolution of the components of the system. Unfortunately,
the large size and intricacy of these networks implies that such insight is usually
difficult to extract. Here, we propose a method that allows one to systematically
extract and display information contained in complex networks. Specifically, we
demonstrate that one can (i) find modules in complex networks and (ii) classify
nodes into universal roles according to their pattern of within- and between-
module connections. The method thus yields a ‘cartographic representation’ of
complex networks.
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1. Introduction

Integrative approaches to the study of complex systems demand that one knows the
manner in which the parts comprising the system are connected. Recent studies have
revealed that these interaction networks often display complex features themselves, thus
deviating from purely random or purely ordered topologies [1]–[8]. The Internet [9], food
webs [10]–[12], and metabolic networks [13] are examples of complex networks.

To extract the relevant information from the topology of large complex networks,
knowledge of the role of each node is of crucial importance. A cartographic analogy
helps to illustrate this point. Consider the network formed by all cities and towns in a
country—the nodes—and all the roads that connect them—the links. It is clear that a
map in which each city and town is represented by a circle of fixed size and each road is
represented by a line of fixed width is of little use. Rather, real maps emphasize capitals
and important communication lines so that one can obtain scale-specific information at
a glance. Similarly, it is difficult, if not impossible, to obtain information from a network
with hundreds or thousands of nodes and links, unless the information about nodes and
links is presented in a scale-specific context.

Here, we propose a methodology, which is based on the connectivity of the nodes,
that yields a ‘cartographic representation’ of a complex network. The first step in our
method is to identify the modules [14] in the network. In the cartographic picture, modules
are analogous to countries or regions, and enable a coarse-grained, and thus simplified,
description of the network. Then, we classify the nodes in the network into a small number
of system-independent ‘universal roles’.
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2. Modules in complex networks

It is a matter of common experience that social networks have communities of highly
interconnected nodes that are less connected to nodes in other communities. Such
modular structures have been reported not only in social networks [14]–[17], but also
in the Internet [18], in food webs [19, 20] and in biochemical networks [21]–[24]. It is
widely believed that the modular structure of complex networks plays a critical role in
their functionality [21, 22, 25]. There is therefore a clear need to develop algorithms for
identifying modules accurately [14, 16, 18, 26, 27].

2.1. Modularity

Here we propose a method that is based on the maximization of the modularity [16, 26, 28].
For a given partition of the nodes of a network into modules, the modularity M of this
partition is

M ≡
NM∑
s=1

[
ls
L
−

(
ds

2L

)2]
, (1)

where NM is the number of modules, L is the number of links in the network, ls is the
number of links between nodes in module s, and ds is the sum of the degrees of the nodes
in module s. The rationale for this definition of modularity is the following. A good
partition of a network into modules must comprise many within-module links and as few
as possible between-module links. However, if one just tries to minimize the number of
between-module links (or, equivalently, maximize the number of within-module links) the
optimal partition consists of a single module and no between-module links. Equation (1)
addresses this difficulty by imposing that M = 0 if nodes are placed at random into
modules or if all nodes are in the same cluster [16, 26, 28].

2.2. Simulated annealing for module identification

The objective of a module identification algorithm is to find the partition with largest
modularity, and several methods have been proposed for attaining such a goal. Most of
them rely on heuristic procedures and use M—or a similar measure—only to assess their
performance. In contrast, we use simulated annealing (SA) [29, 28] to obtain the best
determination of the modules of a network by direct maximization of M .

Simulated annealing [29] is a stochastic optimization technique that enables one to
find ‘low cost’ configurations without getting trapped in ‘high cost’ local minima. This
is achieved by introducing a computational temperature T . When T is high, the system
can explore configurations of high cost while at low T the system only explores low cost
regions. Starting at high T and slowly decreasing it, the system descends gradually toward
deep minima, overcoming small cost barriers.

When identifying modules, the objective is to maximize the modularity and, thus,
the cost is C = −M , where M is the modularity as defined in equation (1). At each
temperature, we perform a number of random updates and accept them with probability

p =




1 if Cf ≤ Ci

exp

(
−Cf − Ci

T

)
if Cf > Ci

(2)

where Cf is the cost after the update and Ci is the cost before the update.
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Specifically, at each T we propose ni = fS2 individual node movements from one
module to another, where S is the number of nodes in the network. We also propose
nc = fS collective movements, which involve either merging two modules or splitting a
module. For f we typically choose f = 1. After the movements are evaluated at a certain
T , the system is cooled down to T ′ = cT , with c = 0.995.

Both the individual movement of a node from a module to another, and the merging
of two modules are straightforward movements. The split movement is, however, more
involved. In principle, any heuristic procedure that generates non-deterministic plausible
splits of a module—that is, splits that have a finite probability of being accepted—would
suffice.

We have considered a number of different schemes. The one that performs best
consists in isolating the module from the rest of the network, and performing a ‘nested’
SA, entirely independent of the ‘global’ one. We start by isolating the module that we
intend to split. We then partition its nodes into two random groups, and set the initial
temperature of the nested SA to a high value. Then, we make individual node movements
according to the modularity of the isolated module and decrease the temperature of the
nested SA until it reaches the value of the global SA. The result of the nested SA is a
partition of the module into two new modules, which we accept or reject according to the
global modularity and the global temperature.

In using M as a ‘fitness function’, our method is more ‘transparent’ than those relying
on heuristic procedures. Furthermore, SA enables us to carry out an exhaustive search
and to minimize the problem of finding sub-optimal partitions. It is noteworthy that, in
our method, one does not need to specify a priori the number of modules; rather, the
number of modules is an outcome of the algorithm.

To test the performance of the method, we build ‘random networks’ with known
module structure. Each test network comprises 128 nodes divided into 4 modules of 32
nodes. Each node is connected to the other nodes in its module with probability pin, and
to nodes in other modules with probability pout < pin. On average, thus, each node is
connected to kout = 96pout nodes in other modules and to kin = 31pin in the same module.
Additionally, pin and pout are selected so that the average degree of the nodes is k = 16.
Our algorithm, which significantly outperforms the best algorithm in the literature [14],
is able to reliably identify modules in a network whose nodes have as many as 50% of
their connections outside their own module (figure 1).

3. Roles in complex modular networks

Already in 1957, Nadel argued that ‘roles’ are the central elements in the analysis
of social systems [30, 31], and in the 1970s White and co-workers introduced the
concepts of structural equivalence and block model to address this issue from a network
perspective [32]–[34], [31]. Two nodes are structurally equivalent if they are connected to
the same nodes [32, 34]. Therefore, any network can be divided into blocks of structurally
equivalent nodes in such a way that the structure of the network is summarized in a block
model by stating the relations between the blocks (figure 2).

Usually, structural equivalence is too strong a requirement for a large complex
network; it is very unlikely that two nodes are connected to exactly the same set of
other nodes. Regular structural equivalence [35, 34] relaxes this requirement by requiring
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Figure 1. (a) The performance of a module identification algorithm is typically
defined as the fraction of correctly classified nodes. We compare our algorithm
to the Girvan–Newman algorithm [14, 26], which is the reference algorithm for
module identification [16, 26, 27]. Note that our method is 90% accurate even
when half of a node’s links are to nodes in outside modules. (b) Our module
identification algorithm is stochastic, so different runs yield, in principle, different
partitions. To test the robustness of the algorithm, we obtain 100 partitions of
a network with kin = kout = 8 and plot, for each pair of nodes in the network,
the fraction of times that they are classified in the same module. As shown in
the figure, most pairs of nodes are either always classified in the same module
(red) or never classified in the same module (dark blue), which indicates that the
solution is robust.
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Figure 2. (a) Structural equivalence and blocks. The network depicted can be
divided into four blocks of structurally equivalent nodes. All nodes in block 1
are connected to each other and to all nodes in block 2. All nodes in block 2 are
connected to all nodes in blocks 1 and 3, and so forth. (b) The structure of the
network can be conveniently summarized using a block model matrix.

that regularly equivalent nodes have identical links to other equivalent nodes. Formally,
if nodes i and j are regularly equivalent and i has a link to/from some node k, then
node j must have a link to/from some node l, and nodes k and l must be, also, regularly
equivalent [34].
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Figure 3. Weaknesses of the block approach to the identification of roles in
modular networks. (a) To illustrate the weaknesses of the block model approach
to the identification of roles in modular networks, consider the network shown.
Black nodes are connected to white nodes only, and white nodes are connected
to black nodes only. Therefore, black nodes are regularly structurally equivalent
to each other and white nodes are regularly structurally equivalent to each other.
An ideal block detection algorithm may thus partition the nodes into two blocks,
black and white. Significantly, this partition fails to capture the truly significant
roles of the nodes in the network. Namely, nodes A and B are the ‘centres’ of
their modules, nodes C and D are module connectors, and all the other nodes are
peripheral. (b) Identification of roles based on the ‘within-module degree’ and
the ‘participation coefficient’ (see the text for definitions).

Real networks are likely to have both a modular structure and a block structure. This
fact raises serious concerns about the conceptual relationship between blocks and roles.
Although blocks certainly give interesting information about the overall structure of the
network, simple examples, such as the one shown in figure 3, demonstrate that, in general,
blocks cannot be interpreted as roles.

Motivated by this handicap of the block scheme, we propose a new method for
determining the role of a node in a complex network. Our approach is not based on
the idea of blocks but on the general idea that nodes with the same role should have
similar topological properties (figure 3(b)).

3.1. Within-module degree and participation coefficient

Each module can be organized in very different ways, ranging from totally centralized—
with one or a few nodes connected to all the others—to totally decentralized—with all
nodes having similar connectivities. Nodes with similar roles are expected to have similar
relative within-module connectivity. If κi is the number of links of node i to other nodes
in its module si, κsi

is the average of κ over all the nodes in si, and σκsi
is the standard

deviation of κ in si, then

zi =
κi − κsi

σκsi

(3)
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is the so-called z-score. The within-module degree z-score measures how ‘well connected’
node i is to other nodes in the module.

Different roles can also arise because of the connections of a node to modules other
than its own. For example, two nodes with the same z-score will probably play different
roles if one of them is connected to several nodes in other modules while the other is not.
We define the participation coefficient Pi of node i as

Pi = 1 −
NM∑
s=1

(
κis

ki

)2

(4)

where κis is the number of links of node i to nodes in module s, and ki is the total degree
of node i. The participation coefficient of a node is therefore close to one if its links are
uniformly distributed among all the modules and zero if all its links are within its own
module.

We hypothesize that the role of a node can be determined, to a great extent, by
its within-module degree and its participation coefficient, which define how the node is
positioned in its own module and with respect to other modules [36, 37]. Note that these
two properties are easily computed once the modules of a network are known.

3.2. Arguments for the definition of a universal set of discrete roles

We surmise that the role of a node is defined mainly by its within-community degree
and its participation coefficient. Our definition of the roles is firstly determined by the
within-module degree. We classify nodes with z ≥ 2.5 as module hubs and nodes z < 2.5
as non-hubs. Both hub and non-hub nodes are then more finely characterized by using
the values of the participation coefficient. Simple calculations suggest that non-hub nodes
can be naturally assigned into four roles:

• Ultra-peripheral nodes (role R1).
If a node has all its links within its module (P ≈ 0).

• Peripheral nodes (role R2).
If a node has at least 60% its links within the module, then for k < 4 it follows that
P < 0.625 (figure 4(a)).

• Non-hub connectors (role R3).
If a node with k < 4 has half of its links (or at least two links, whichever is larger)
within the module, then it follows that P < 0.8 (figure 4(a)). Thus, a plausible region
for non-hub connectors is 0.62 < P < 0.8.

• Non-hub kinless nodes (role R4).
If a node has fewer than 35% of its links within the module, it implies that P > 0.8.
We surmise that such nodes cannot be clearly assigned to a single module. We thus
classify them as kinless nodes. We will demonstrate later that non-hub kinless nodes
are found in most network growth models, but not in real-world networks.

Similarly, hubs can be naturally assigned into three different roles:

• Provincial hubs (role R5).
If a node with a large degree, k � 1, has at least 5/6 of its links within the module,
then it follows that P = 1 − (5/6)2 − (k/6)(1/k2) = 0.31 − 1/(6k) ≈ 0.30.
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Figure 4. The dependence of the value of the participation coefficient on the
total degree and fraction of within-module links. (a) P for, from top to bottom,
1/3, 0.4, 1/2, 0.6, 0.66, 0.7, 0.75, 0.8, and 0.9 of within-module links. The red
horizontal line corresponds to P = 0.8 and the dark green one to P = 0.625.
These results suggest that P > 0.8 occurs only for cases in which the assignment
of a node to a role is mostly a matter of chance. (b) P for, from top to bottom,
0.4, 1/2, 0.6, 0.7, 0.8, and 0.9 of within-module links. The red curve, which
corresponds to half of the links being within the module, converges to P = 0.75.
The green curve, which corresponds to 80% of the links being within the module,
converges to P = 0.35.
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Figure 5. Role-specific regions in the zP parameter space.

• Connector hubs (role R6).
If a node with a large degree has at least half of its links within the module, then it
follows that P = 1 − 1/4 − (k/2)(1/k2) = 0.75 − 1/(2k). Since k � 1, P < 0.75 for
such nodes.

• Kinless hubs (role R7).
If a hub has fewer than half its links within the module, i.e., P > 0.75, then we
surmise that it may not be clearly associated with a single module. We then classify
it as a kinless hub. We will demonstrate later that hubs in most network growth
models are actually kinless hubs.
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Figure 6. (a) Values of z and P for 26 771 nodes from 16 networks, including
the metabolic networks of three organisms, the proteome of C. elegans, the
North-American airport network [38, 39], the collaboration networks of chemical
engineers obtained from two journals (Chemical Engineering Science and the
AIChE Journal), the Internet at the autonomous system level [9], four Erdös–
Rényi graphs with p = 0.004, 0.006, 0.008, and 0.010, and four Barabási–Albert
graphs with m = 1, 2, 3, and 4. (b) Values of z and P for two Barabási–Albert
graphs with 1000 nodes each. (c) Values of z and P for 940 nodes in the largest
fully connected component of the North-American airport network. (d) Values
of z and P for two Erdös–Rényi graphs with 1000 nodes each.

In total, we are left with seven roles that correspond to seven regions of the zP
parameter space (figure 5).

4. Roles in real networks: validation of the role definitions

Our definition of a set of distinct roles has been, so far, based on mathematical arguments.
A question that we need to address is, therefore, how this definition relates to the roles
of nodes in real networks.
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Figure 7. The density landscape for the nodes belonging to eight real-world
networks and eight model networks. Due to the fact that more than 98% of the
nodes have z < 2.5, one finds that the density landscape for z > 2.5 is quite
‘washed’ down by the background of the non-hub region. For this reason, we
obtain the density landscape under two distinct conditions: (a) in the first, we
weigh each hub with a weight of one; (b) in the second, we weigh each hub with
a weight of five.
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Figure 8. Basins of attraction for density landscapes obtained for non-hub nodes
obtained with (a) σP = 0.03, (b) σP = 0.035, (c) σP = 0.05, and (d) σP = 0.08.
Note how the values of P identified in our simple analysis provide a good match
to the boundaries of the basins of attraction in the node density landscapes.
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Figure 9. Basins of attraction for density landscapes obtained for hubs with (a)
σP = 0.03 and (b) σP = 0.05.

In order to obtain as complete as possible a picture of how the nodes in a given
network might populate the zP parameter space, we calculate z and P values for all the
nodes in a large number of networks (figure 6). Specifically, we obtain these values for
(i) the metabolic networks of three organisms, (ii) the proteome of C. elegans, (iii) the
North-American airport network, (iv) the collaboration networks of chemical engineers
as defined by publications in two different journals, (v) the Internet at the autonomous
system level. Additionally, we obtain these values for nodes in model networks generated
by the Barabási–Albert network growth model [3] and the Erdös–Rényi model [40]. In
all, we consider in our analysis 26 771 nodes.

4.1. Uncertainty in the position of nodes in parameter space and the density landscape

In our analysis, we estimate the value of the within-module degree of each node and its
participation coefficient. Since we have access to these networks at a single moment in
time, it is plausible to assume that the values that we measure for zm and Pm for a given
node are not error free. To take this uncertainty into consideration, we assume that each
node could be in a region of the zP space, which is centred in the measured (zm, Pm)
value. Specifically, we assign to each node a Gaussian distribution centred at (zm, Pm)
and with widths σz and σP , which gives the probability of finding that particular node at
any point of the zP parameter space.

By adding the distributions of all nodes, one obtains a ‘density landscape’ that
represents the probability of finding a node at a certain point of the zP space. In figure 7,
we plot the density landscape obtained for the 26 771 nodes with σP = 0.035. In the
density landscape, high probability regions are valleys and low probability regions are
peaks. Then, at (almost) every point of the landscape, one can ‘follow’ the gradient to
reach a local minimum. The region of the space that ‘flows’ toward a certain minimum is
what we call a ‘basin of attraction’.

4.2. Non-hub nodes

As discussed above, we define non-hub nodes as those with z < 2.5. We then calculate the
node density plot for different choices of the values of σz and σP and identify the basins
of attraction for the different node density plots (figure 8). These plots confirm that our
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definition of non-hub roles with boundaries at P = 0.62 and P = 0.80 is a sensible one
and that, indeed, these regions of the zP space correspond to distinct universal roles in
real networks.

4.3. Hub nodes

We define hub nodes as those with z ≤ 2.5. We then calculate the node density plot for
different choices of the values of σz and σP and identify the basins of attraction for the
different node density plots (figure 9).

In this case, there are many more basins of attraction than for the non-hub region
because of the scarcity of data points. However, the density plots are compatible with
a selection of three regions corresponding to distinct roles, with boundaries at P = 0.30
and 0.75, as estimated before.

5. Conclusions

Computational and high throughput techniques are leading to an explosive and
unprecedented growth in the amount of information available for some physical, biological,
and socio-economic systems. These advances are creating the opportunity to revolutionize
our understanding of nature, life and disease, and social organization. Interpretation of
these data remains, however, a major scientific challenge.

Here, we presented a methodology for extracting relevant scale-specific information
from complex networks. Our method is based on the analysis of the connectivity patterns
of the nodes, and yields a ‘cartographic representation’ of a complex network. The first
step in our method is to identify the modules in the network. In the cartographic picture,
modules are analogous to countries or regions, and enable a coarse-grained, and thus
simplified, description of the network. Then, we classify the nodes in the network into a
small number of system-independent ‘universal roles’. A node’s role is determined from
its pattern of inter- and intra-module connections.

Our ‘cartographic method’ provides a way to process the information contained in the
structure of complex networks, and to extract knowledge about the function carried out
by the network and its constituents. This should allow us, in turn, to identify key players
in the network. Some of these key nodes are likely to be already known. For example,
hubs are highly visible due to their large number of connections. More interestingly,
our method also enables one to identify more ‘subtle’ roles, such as non-hub connectors,
which play important structural roles in spite of their small number of connections. In
metabolic networks, for example, it seems that these nodes are highly conserved compared
to provincial hubs [24].

Acknowledgments

We thank L Broadbelt, A A Moreira, E T Papoutsakis, M Sales-Pardo, and D B Stouffer
for stimulating discussions and helpful suggestions. RG thanks the Fulbright Program and
the Spanish Ministry of Education, Culture & Sports. LANA gratefully acknowledges the
support of a Searle Leadership Fund Award and of a NIH/NIGMS K-25 award.

References

[1] Watts D J and Strogatz S H, 1998 Nature 393 440
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[11] Camacho J, Guimerà R and Amaral L A N, 2002 Phys. Rev. E 65 030901
[12] Stouffer D B, Camacho J, Guimerà R, Ng C A and Amaral L A N, 2005 Ecology at press
[13] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabási A L, 2000 Nature 407 651
[14] Girvan M and Newman M E J, 2002 Proc. Nat. Acad. Sci. 99 7821
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