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Canalizing Kauffman Networks: Nonergodicity and Its Effect on Their Critical Behavior
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Boolean networks have been used to study numerous phenomena, including gene regulation, neural
networks, social interactions, and biological evolution. Here, we propose a general method for determin-
ing the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In
particular, we solve the critical condition for systems of units operating according to canalizing functions
and present strong numerical evidence that our approach correctly predicts the phase transition from order
to chaos in such systems.
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Biological and social systems typically comprise a large
number of interacting units coupled through a nontrivial
network of interactions. Examples of such systems include
the metabolic processes in living cells [1] and social inter-
actions in human groups [2,3]. Remarkably, these systems
exhibit a high degree of self-organization that ensures their
continued functioning and allows them to respond to en-
vironmental changes. A challenging aspect in the study of
complex systems is how to model both the diversity of the
evolving units and the intricate structure of their interac-
tions [4].

Discrete (agent-based) models are among the most com-
mon methods used to tackle this challenge. In particular,
Boolean networks (BNs) [5] have been used to model
systems as varied as gene regulation networks [5], evolu-
tion [6], and neuronal networks [7]—see [8] for a review
of BN and their applications. It has been shown that BNs
share many common properties with real systems [5,9], the
most remarkable probably being a transition from an or-
dered to a chaotic phase.

A BN consists of N interacting units whose states �i are
binary variables. Each unit i is connected to ki other units
and its state is updated according to a specific rule

�i�t� 1� � Fi��i1�t�; �i2�t�; . . . ; �iki
�t��; (1)

where Fi is a Boolean function, and the f�ijg are the states
of the units connected to i, which may or may not include i
itself. Boolean functions are represented by a truth table
that lists the output of the function for each of the possible
set of input values. For a function with k variables there are
2k possible input sets, yielding 22

k
different possible

functions.
The ensemble of functions E defines the probability with

which each function appears in the system. In the original
formulation, BNs have the coupling connections chosen at
random and the Boolean functions Fi drawn from an
ensemble Erand�	�, where 	 is the fraction of active states
in the output of the functions. In the following we refer to 	
as the ‘‘bias,’’ although the case 	 � 0:5 is actually un-
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biased. This instance of the model is usually denoted
Kauffman networks or random Boolean networks (RBNs).

Typically, BNs display a transition from order to chaos.
In the ordered phase, the network evolves toward limiting
cycles and, upon a perturbation, the system usually con-
verges back to the initial limiting cycle. In the chaotic
phase, the lengths of the attractor cycles grow exponen-
tially with N, and almost any perturbation will drive the
system toward a different attractor. The critical behavior of
RBNs has been determined by means of several different
techniques [10,11]. Not much, however, is known about the
critical behavior of BN with other ensembles of functions.

In a recent paper, Shmulevich and Kauffman [12] sug-
gested that the dynamical behavior of a BN can be related
to the ‘‘average influence’’ of the variables of its Boolean
functions. Here, we use the concept of damage spreading to
demonstrate the role of the influence in the dynamical
behavior of BNs. We show that, since BNs are nonlinear
models not likely to have ergodic dynamics, a naive aver-
age of the influence over the whole phase space of BNs
does not necessarily yield a correct estimate of the effec-
tive influence of the Boolean variables. We thus revise the
definition of average influence in order to account for the
nonergodicity of the dynamics of BNs. Our definition
enables us to derive the critical condition of networks of
canalizing Boolean functions, a case of particular biologi-
cal relevance [13,14]. Finally, we show numerical evidence
that our method correctly predicts the critical condition for
networks of canalizing Boolean functions.

The dynamics of BNs can be quantified by measuring
the spread of ‘‘damage’’ through the network. This is done
by comparing the parallel evolution of two ‘‘replicas’’ of
the system. The replicas have identical Boolean functions
and coupling connections, but the initial state of the units in
the replicas differs in only a small fraction of the units. The
damage, which is also known as the Hamming distance
h�t�, is defined as the fraction of units that are in different
states in the two replicas. If, after some transient time, the
evolving replicas are likely to converge to the same state,
i.e., h�t� ! 0, then the dynamics of the system is robust
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with regard to small perturbations, a signature of the
ordered phase. If, however, the replicas are likely to never
converge, then the dynamics is sensitive to small perturba-
tions to the initial state, a signature of the chaotic phase. As
discussed in the caption of Fig. 1, a system is in the ordered
phase whenever

dh�t� 1�

dh�t�

��������h�t�!0
<1: (2)

Significantly, the susceptibility of unit i to damage in its
neighbors can be related to the influence of their variables
on Fi. One defines the influence Ij�Fi� of the jth variable of
a function Fi as the probability that the function Fi changes
its value when the value of �j is changed [15,16]. The
average influence of a function I�Fi� 


1
ki

jIj�Fi�, and the

average influence I�E� of an ensemble E of Boolean func-
tions is I�E� 
 hI�Fi�iE , where h. . .iE indicates an average
over the ensemble E.

One can generalize this definition to multiple variables
[15]: I�1� 
 I is the average influence of one variable, I�2� is
the average influence of two variables, and so on. The
probability that an arbitrary unit is damaged in the next
step depends on the number kd of damaged inputs it gets
and on the influence I�kd� of kd variables. Since the inputs
are an arbitrary sample of the entire network we can
assume that kd follows a binomial distribution and write
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FIG. 1 (color online). The critical condition for Boolean net-
works (BN). The Hamming distance h�t� is defined as the
normalized difference between two replicas of a BN at time t.
We show in this figure the iterative mapping for the Hamming
distance for the case of random BNs with bias 	 � 0:6 [10]. The
solid line corresponds to a network with connectivity k � 4 and
the dashed line to k � 2. The symbols indicate the Hamming
distances obtained numerically for a few time steps in the
evolution of two biased networks with k � 4 and k � 2. The
identity mapping, indicated by the dotted line, and the arrows are
included to illustrate the time evolution of h�t�. For the case k �
4, the Hamming distance remains at finite value, while for k � 2
it tends to zero. The system is in the ordered phase when the
Hamming distance converges to zero. Note that h � 0 is a fixed
point of the mapping, but is unstable whenever the iterative
mapping at the origin grows with a steeper slope than the identity
line; cf. Eq. (2).
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the evolution of the Hamming distance as

h�t� 1� �
Xk
kd�1

I�kd�
k
kd

� �
�h�t��kd�1
 h�t��k
kd ; (3)

where �ki� is the binomial coefficient. Thus, the influences
I�kd� determine the shape of the iterative mapping of h�t�.
Inserting Eq. (3) into Eq. (2), we have that the critical
condition depends only on the average influence of one
variable,

I�E; kc�kc � 1: (4)

Equation (4) enables us to determine the critical condition
for BNs with arbitrary ensembles of functions [17].

This is not trivial, however. The difficulty in using
Eq. (4) lies in computing the influence of the variables of
the Boolean functions present in the network. In principle,
the influence of the variables can be determined by count-
ing in the truth table the number of times that changing the
value of only one variable results in a change in the value of
F. This approach, which was explored in [12], implicitly
assumes ergodicity, that is, all inputs can arise with the
same probability during evolution, and time average over
the states visited by the network yields the same result as
average over the whole phase space. This is an implausible
assumption that is unlikely to hold for the dynamics of
arbitrary BNs.

In some instances, however, an equally weighted aver-
age does yield to correct results. An example is the en-
semble of RBNs [11]. Note that this does not imply that
RBNs are ergodic. In fact, the dynamics of BNs in general
converge to limiting cycles that occupy only a fraction of
the entire phase space. To correctly average the influence
of the Boolean variables, one must measure the influence
only on those states composing the limiting cycles.

We can verify in which cases an equally weighted aver-
age can work. If one assumes that the states of the neigh-
bors of a unit are not correlated with the state of the unit
itself (random-graph approximation), it follows that the
input acting on the unit is a statistical sample of the whole
network. Thus, the probability of a certain input depends
on the fraction q of units that are in the active state. That is,
if the network has a bias toward activity, q > 0:5, the inputs
with more 1s will be more frequent than the inputs with
more 0s. Therefore, the activity q of the network should be
taken into account when computing the average influence
of the BN. The reason why a simple average over the whole
phase space works in RBNs and a few other ensembles is
that, on these networks, the influence does not depend on q;
thus, averaging over the states of the limiting cycles yields
the same result as averaging over the whole phase space.
As we demonstrate later, this property does not generally
hold for arbitrary ensembles of Boolean functions.

In the following, we focus on the ensemble of canaliz-
ing Boolean functions Ecan. Studies of gene regulation in
eukaryots have showed that the Boolean idealization is a
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good approximation for the nonlinear dynamics of this
system and that the gene regulating mechanisms have a
strong bias toward canalizing functions [13]. A Boolean
function is canalizing if, whenever one variable, the canal-
izing variable, takes a given value, the canalizing value, the
function always yields the same output. The ensemble of
canalizing functions can be separated into four mutually
exclusive classes of functions:

F��1; �2; . . .� � �1 OR G��2; . . .�; (5a)

F��1; �2; . . .� � �NOT �1� AND G��2; . . .�; (5b)

F��1; �2; . . .� � �NOT �1� OR G��2; . . .�; (5c)

F��1; �2; . . .� � �1 AND G��2; . . .�; (5d)

where �1 is the canalizing variable, ‘‘AND,’’ ‘‘OR,’’ and
‘‘NOT’’ are the logical Boolean operators, and G is the
noncanalizing part of the function that carries the depen-
dence on the remaining variables. Each of these classes
represents a different type of regulation. The class de-
scribed by (5a) represents ‘‘sufficient activators’’; that is,
�1 � 1 is sufficient to assure an active state for the unit.
The class described by (5b) represents ‘‘sufficient repress-
ors’’; that is, �1 � 1 always results in an inactive state for
the unit. The classes described by (5c) and (5d) represent
‘‘necessary repressors’’ and ‘‘necessary activators,’’ re-
spectively. In these cases, �1 � 0 is also enough to deter-
mine the output of the function.

The average influence for the ensemble Ecan depends on
the probability Pcan with which �1 takes the canalizing
value. For classes described by (5a) and (5b), �1 gives a
sufficient condition for activation or repression, respec-
tively. This means that for these classes the canalizing
value is an active state. On the other hand, for classes
(5c) and (5d) the canalizing value is an inactive state. If
both cases are equally present on the network, one has
always Pcan � 0:5. However, if one of the canalizing val-
ues is more frequent than the other, Pcan will depend on the
fraction q of units in the active state. To account for this
effect, we define � as the fraction of the functions in the
ensemble that falls into classes (5a) and (5b). Thus, the
probability that the canalizing variable takes the canalizing
value is

Pcan � q�� �1
 q��1
 ��: (6)

The next step is determining the average activity q of the
network when the limiting cycles are reached. To do this,
we need to define some relevant parameters characterizing
the ensemble of canalizing functions. Note that, for the
classes described by Eqs. (5a) and (5c), the use of the ‘‘OR’’
operator means that the values of �1 and G give two
alternative conditions yielding an active output, while for
the classes described by Eqs. (5b) and (5d), the ‘‘AND’’
operator means that the values of �1 and G give two
necessary conditions for obtaining an active output. The
use of the ‘‘OR’’ operator thus results in a bias toward
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activity. To quantify this bias, we define 	1 as the fraction
of the functions in the ensemble that falls into classes (5a)
and (5c). Note that the bias of the canalizing functions
toward the active state will also depend on G, the non-
canalizing part of F. We assume that G is chosen as a
random Boolean function with bias 	2.

It is possible to measure the probability that a random
input results in an active output. This probability is the
average bias 	can � �	1 � 	2�=2 of the ensemble of canal-
izing functions Ecan. However, one cannot assume that in
the limiting cycles any input happens with the same
chance. For the ensemble Ecan, the average activity for
the limiting cycles is given by

q � 	1Pcan � 	2�1
 Pcan�; (7)

where the first term on the right accounts for the probabil-
ity that the function is being canalized to activity and the
second for the probability that the function G is driving the
function to activity.

We can now proceed and calculate the average influence
for the ensemble of canalizing functions. We consider first
only the average influence of the canalizing variable I1,
which is given by the probability that G � 0 when the OR

operator is chosen, plus the probability that G � 1 when
the AND operator is chosen; I1�	1�1
	2���1
	1�	2.
The influence of the remaining variables Ii depends on the
probability that the functions are not locked by the canal-
izing variable, 1
 Pcan, and on the bias 	2 of G. Finally,
we have Ii � 2	2�1
 	2��1
 Pcan�, and

kI�	1�	2
2	1	2�2	2�1
	2�

����q�1
2����k
1�: (8)

If one assumes that all input in the truth table contributes
with the same weight to the average, then Pcan � 0:5, and

kI � 	1 � 	2 
 2	1	2 � �k
 1�	2�1
 	2�: (9)

One of the cases where Eq. (9) works is when � � 0:5.
We next test our theoretical results against numerical

simulations of BNs of canalizing functions. This is done by
building random networks with Boolean functions obeying
the ensemble of canalizing functions described by Eq. (5).
We assign random initial states to the networks and let
them evolve until they reach a limiting cycle [18]. We then
make a perturbation by changing the state of one of the
units in the network. The resilience of the system to this
damage is the probability that, after the perturbation, the
system converges back to the initial limiting cycle [19]. We
show in Fig. 2 that, as the system size grows, the transition
from order to chaos becomes sharper and approaches a
critical condition where kI � 1; cf. Equation (8).

Note that, when the network has a bias in the canalizing
value, � � 0:1, there is a considerable reduction in the
region occupied by the chaotic phase, mainly in the region
where the network is biased to the inactive state: low 	1

and 	2. This bias for an inactive canalizing value was
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FIG. 2 (color online). Order-chaos phase transition for net-
works of canalizing Boolean functions. The color coding repre-
sents the probability that, after changing the state of a random
unit of a network in a limiting cycle, the system returns to the
same cycle. The resilience of the network to small perturbations
is a signature of the ordered phase. The parameter � gives the
probability with which a Boolean function in the network is
canalized by an active input. In the trivial case � � 0:5, the
average influence does not depend on the activity of the network,
the influence can be computed with an average over the truth
table of the Boolean functions in the network, and one finds the
critical condition when kI � 1 in Eq. (9). In the nontrivial case
� � 0:1, one finds no difference in the value of the influence
when computed from the truth table of the functions. However, it
is clear that the critical curve is sensible to the value of �. The
difference is due to the fact that in the latter case the average
influence depends on the activity of the network, one has to make
a weighted average over the states occupied by the limiting
cycles, and the critical condition is kI � 1 in Eq. (8). In both
cases, as the network grows, the transition becomes sharper and
approaches the critical curves (dotted lines).
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observed in the mechanisms of gene regulation [14] where
the transcription of a given gene may depend on the
presence of several activator proteins, that is, a single
inactive input—the absence of one of the activators—
can result in an inactive state—no transcription.

The major finding of this study is that, by using the
concepts of influence of Boolean variables and damage
spreading, we are able to obtain the critical behavior of
Boolean networks built from arbitrary ensembles of func-
tions. We show that for most networks the effective influ-
ence of the variables cannot be obtained by a simple
average over the truth table of the functions. We further
obtain an expression for the influence of the variables for
networks of canalizing Boolean functions and present
strong numerical evidence that our method can accurately
predict the critical transition for these networks. Our work
suggests that the approach described here can solve the
critical transition of other ensembles of Boolean functions
such as nested canalizing functions [14]—which are
thought to be a valuable model for the description of
21870
gene regulation networks—or random threshold functions
[7]—a common model for neural networks.
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