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To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover
the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present
here a mesoscopic-level computational model that providesva windowinto nucleic acid dynamics. We
model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer
comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can
rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We
use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin
motion. By performing a number of tests, we first show that our model is physically sound. We then focus on
a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments
joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree
with experimental observations, demonstrating that our model is a suitable tool for the investigation of the
hybridization of single strands.
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I. INTRODUCTION acids. In order to validate our model, we study short DNA
Some of the most challenging questions in hairpins—single-stranded nucleic acid chains comprising

biochemistry—such as determining RNA secondary structuréV0 complementary “stems” joined by a noncomplementary
starting from sequence alofig 2] or identifying the dynamic “loop.” We show that simulations of the model consistently
mechanism responsible for the slow folding of the molecule’eproduce predicted melting temperatures. To validate the
into its catalytic structurg3,4]—concern the mesoscopic be- dynamics, we focus our attention on a DNA hairpin which
havior of nucleic-acid chains. The understanding of the conwas extensively studied experimentally by Ansari and co-
figurational changes of nucleic acids is a key step if onewvorkers[16,18 and show that the relaxation rates measured
wishes to control cellular processes such as transcription avith our model agree with the relaxation rates measured ex-
translation. In addition, the configurational dynamics ofperimentally.

single-stranded nucleic acids is also relevant to microarray This paper is organized as follows. In Sec. Il, we review
experiments: The expression level assigned to a given genpe existing modeling approaches for DNA. In Sec. lIl, we
is related to the hybridization of a labeled nucleic-acid chairgescribe our model including the basic units, the types of
(the probe to another nucleic-acid chain tethered to a glassnteractions, and the implementation of the dynamics. In Sec.
slide (the targex [5—7]. In microarrays, each gene is repre- |y e present the results of a number of tests used to vali-
sented in 10 to 20 spots. Significantly, the hybridizationgate the model, including the comparison with experimental

ﬁields for spots representing 'g;e sa][ne rg];e_ne exhibit larggnqeryations for an extensively studied hairpin. Finally, in
uctuations, posing serious problems for the interpretation 0§ "\, we present our conclusions,

microarray result§8-10]. Understanding the hybridization
of target and probe will thus help us in designing more reli-
able microarrays and in interpreting microarray data. Il. PRIOR NUCLEIC ACID MODELING

Nucleic-acid hairpins are likely the least complex system ) . _ ) )
from which to assess mesoscopic properties of single strands. NUcleic acids are linear polynucleotide chains. Each
They are also relevant to a number of biologically importanthucleotide comprises a nitrogenous organic base attached to
phenomena. For example, in RNA, the formation of hairpin@ Pentose—a five-carbon sugar—which is also attached to a
structures is believed to be the critical step before the fagehosphoric acid. The pentose in DNA is a deoxyribose, while
folding into the native configuratiohll], while, in DNA, in RNA the pentose is a ribose. The carbon atoms in the
hairpin formation is relevant to a number of significant pro-pentose are labeled froni,lthe carbon to which the base is
cesses such as recombination, transposition, and gene eattached, to § to which the phosphate group is attached.
pression[12—-14. For these reasons, hairpins are systems td@he bases fall onto two groups: Tipeirines—adenine(A)
which experimentalists have devoted much attentiorand guanine(G)—and the pyrimidines—thymine (T), cy-
[15-20. Importantly, experimental observations report that,tosine(C), and uracil(U). The combination of a nucleic base
even for short hairpins, the configurational dynamics is comand a pentose is called a nucleoside. A nucleotide is formed
plex and strongly affected by sequence. by attaching one, two, or tree phosphate groups to a nucleo-

Here, we develop a mesoscopic-level model which weside.
show can describe the dynamics of single-stranded nucleic Ab initio modeling For short time and length scales, re-
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searchers typically usab initio models, in which interac- Elastic chains To investigate even larger molecules, one
tions between atoms are calculated by integration of théias to introduce further simplifications. For instance, to in-
Schrodinger equatiof21-23. Since the electron orbitals are vestigate the supercoiling structure of dsDNA in chromo-
explicitly considered, this approach is adequate to investigatéomes, researchers model dsDNA as an elastic chain whose
phenomena involving changes in electronic states such agits interact electrostaticalljg4]. With these models, it is
chemical reactivity and absorption of light. possible to investigate the dynamics of very long chains con-

A weakness ofab initio modeling is that it takes into  t5ining thousands of base pairs for time scales on the order of
account neither the molecular structure nor solvent or teMmilliseconds [45]—the time scale associated with site-

perature effects. Thus, these methods only describe the zer,

: . 'Qecific recombination processdd6]—as well as the
temperature gas phase of Y‘U.‘?'e'c aC|ds: Nonethe]ess, the '{é'mperature- or torque-induced denaturation of long mol-
formation obtained fromab initio calculations provides the

theoretical grounds for the parametrization of more coarse?CUIeS[M]'

grained model$24].

Force-field modelsDue to the complexity ofab initio
calculations, the use of these models is restricted to single
nucleotides or oligonucleotide dim€i25]. To model nucleic Recently, several groups have developed models to inves-
acids at larger scales, one can use force-field mg@élR7  tigate the statics and dynamics of single-stranded nucleic ac-
in which the DNA molecule is treated asctassical system ids at mesoscald40,48-52. Most of these models focus on
composed of atoms held together by bonds. In these modelthe investigation of a system of great current interest: hair-
the energy of the system is a function only of the position ofpins, which are single-stranded nucleic acids with two
the atoms. complementary sections linked by a noncomplementary loop

Force-field models have successfully predicted both statif15-18. Hairpins appear in both DNA and RNA and partici-
[28,29 and dynamid 30,31 structural properties of DNA. pate in a number of biological processes such as recombina-
However, a serious handicap of this treatment is that théion and gene expression mechanisid$,53. All-atom
existence of a large number of long-range electrostatic paimodels have also been used to study mesoscopic objects like
wise interactions dramatically increases the duration of thdairpins[54,55. Specifically, Sorinet al. have investigated
simulations. To overcome this problem, one can truncate ththe configurational dynamics of an RNA hairpin 14 bases
potential, but this leads to the construction of an effectivelong. Using 40 000 processors, they could simulate the mol-
potential that is not necessarily accurate. Nevertheless, ecule for 500us. This is clearly the largest scale that one can
chain with 12 base pairs can be simulated for typicallypursue with such models, but, unfortunately, it still falls short
20 nanoseconds, which is the time scale associated with tifer the time scales involved in microarray experiments,
rotation of a nucleotid¢32]. which are of the order of seconds or more.

Zipper models The computational cost of force-field The models proposed for the study of hairpins fall
models imposes the need to develop even coarser descripughly into two categories. In the first category, one finds
tions in order to model longer time scales or longer chainsmodels whose purpose is to investigate the elastic properties
To characterize DNA denaturation, a successful approach isf the hairpin loop$49,52. In these models, the hairpin has
to consider a two-dimensional lattice model in which the twono stem. It is reduced to a homopolymer which represents
strands are bonded by springs and bases oscillate about théie loop and whose monomers in the loop can be either
equilibrium position[33]. As an alternative approach, Ising- stacked or unstacked. For example, in the model of Aalberts
like models—which describe double-strandeld) DNA as et al. [49], the polymer is divided into rigid segments com-
an ensemble of molecule configurations in which bases arprised by an equal number of monomers to mimic different
either open or close[B4-36—are quite accurate in predict- stacking strengths, whereas, in the model of Sial. [52],
ing equilibrium properties such as the melting temperaturethe stacking interaction between neighboring monomers is
of large chains. Recently, these models have been extendsgecifically taken into account. While these models are a
by including elasticity terms in order to describe different practical first approach to investigate ring formation of
dynamic aspects observed in the so-called pulling and unzipsingle-stranded nucleic acids, their use is very limited, since
ping experiments of single molecul€%9,37,38. However, the dynamics of hairpins with long stems cannot be investi-
most of these models do not consider sequence heterogergated.
ity, and even when they do, they do not take into account the In the second category, one finds “configurational mod-
sequence dependence of the single-strand contribution.  els.” These models are defined on a plane, thus they only

Bead modelsA second class of mesoscopic models areconsider the secondary structure of the haiffid,48,50,51.
the so-called bead models, which are used to study the londpifferent configurations in these models differ in the se-
time dynamics of DNA moleculel839-42. In these models, quence of base pairs bonded.
each DNA single strand is a chain of beads. Each bead rep- The model proposed by Chen and D#8] uses polymer
resents a rigid part of the nucleotidié3] or the center of graph theory to compute the entropy associated to the differ-
mass of bases and backbone gro(#8]. Bead models— ent configurations and uses a multiplicative factor to account
which successfully reproduce the melting dynamics observetbr the loss in entropy due to the missing third dimension.
in experiments[40]—typically consider only interactions The stacking free energies for the different configurations are
that affect double-helix stability, neglecting single-strandcomputed for each particular sequence using the Turner rules
properties. [56]. However, single-stranded regions have no energy con-

Mesoscopic models for single-stranded nucleic acids
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Phosphodiester °y °
linkage —= A A FIG. 2. (Color onling Lattice imposed constraints for the

nucleic acid chain configurationga) We use a three-dimensional
0 triangular lattice. We constrain consecutive phosphodiester bonds to

:F\o have an angle larger than or equal to 60° in order to mimic the
)\’ stiffness of the sugar-phosphate backbone. The diagram illustrates
& C the conformations allowed for two consecutive bonds in a three-
::ﬂ:::ule—> ( dimensional triangular lattice. The black solid line and the black
AN circles represent the reference bond and beads, respectively, and the
N purple dashed lines indicate the allowed conformations for the fol-
- o e lowing bond. In the diagram, colored dots represent lattice sites

which are nearest neighbors of the central blue dot. Different colors
indicate the plane on which the site sits: t@pd), middle (blue),

and bottom(green. (b) The phosphodiester bond can be easily
storqued, hence a sugar-base complex can take any spatial orienta-
tion provided it does not overlap with the phosphodiester bond. The
diagram illustrates the ten possible orientations that a @secan
take(purple ellipsesfor a given conformation of the polymer chain
indicated by the black circles and black solid lines.

FIG. 1. (Color online Mesoscale representation of the basic
“units” comprising a nucleic acid chain: Phosphodiester bond
(green circlel sugar moleculeglight blue pentagons and nitrog-
enous basedarge colored circles The diagram to the right illus-
trates the different units in our model: Sugar molecu(bkie
circles are bonded by phosphatégeen straight linesto form the
phosphate backbone of the nucleic a@igleen bo; colored pins
represent the nitrogenous bases. Here and in the following figures,
we use the following color coding: yellow stands for Thymifle, =~ comprises a bead rigidly attached to a pin. The bead repre-
purple stands for Guaning), orange stands for Adenir@), and  sents the sugar molecule, while the pin represents the nitrog-
dark blue stands for Cytosin€). enous base. We model phosphodiester bonds as rigid rods

that connect two consecutive sugar beads and form, with the

tribution. Recently, Zhang and Chéh0] studied the “con- P€ads, the backbone of the chain. , ,
figurational” dynamics with these types of models by intro- _ N€ sugar beads sit on the nodes of a three-dimensional
ducing transition rates. The only allowed transitions arefiangular lattice(Fig. 2). This lattice is commonly used in

those that break or add a base pair to configurations comprisimulations of polymers—see, for instance, RE57]—
ing at least two stacked base pairs. becausdi) each node has a larger number of first neighbors

Coccoet al. proposed a similar model to study the unzip- than cubic lattices, implying that a greater number of sym-
ping dynamics of the pulling experiments on RNA hairpins. Metries are preservedg], and(ii) it is not possible for two
In their model, free energies are also computed using thétra_nds to cross—a situation that is almost unavoidable for
Turner rules and an extra entropic term is assigned to thgUPIC lattices in which movements of the beads to next-
single-stranded ends of the molecule. The dynamics is impldl€arest-neighbor nodes are allow&®]. Note that at each
mented by assigning transition rates to the process of breakiMe, we allow a single bead to sit on any lattice site.
ing or adding a single base pair at each time step.

All these models have a common feature: They rely on
the zipping/unzipping mechanisms to describe the folding ) _ )
and unfolding of hairpins. This approach has been proven To model the stlﬁne_ss of the _cham, we restrict the angle
useful to study some aspects of how the dynamics relate tBetween two consecutive bonfisig. 2(b)]. The model gen-
the free-energy landscape. However, since there is n8rates sequence-dependent elastic propeidi@sby means
sequence-specific treatment of a single strand and since th&§ base-specific stacking interactiofis5,61] (Fig. 3). Be-
do not consider the diffusion of the molecule in space, they?@use bonds that link two consecutive sugars in the strand
are not suitable to investigate the hybridization of target an@an rotate almost freely60], we impose no restrictions on

probe under microarray conditions. the direction of the base pins. . _
An important factor concerning the implementation of the

model is that the characteristic time scale for the rotation of
the nucleosides about the chain axis is of the order of nano-
The model we develop is closest in spirit to the “bead”second$62—-65, at least two orders of magnitude faster than
models (Fig. 1). We model single-stranded nucleic acid the time scale associated with the motion of the monomers in
chains as linear polymer chains in which each monomethe polymer chain itself, which for molecules tens of bases

A. Lattice configurations

Ill. THE BEAD-PIN MODEL
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Hydrogen bonds  Stacking Cross stacking The strength of the different interactions shown in Fig. 3

A A 2 1 was obtained mostly from exp(_erimental data. As a first ap-
c c proximation, we consider the interaction to be symmetric,
-2 i.e., there is no difference between & 3" and 3 to %
G G -3 interactions.
T T -4 We obtain the base-stacking interactions directly from the
ACGT ACGT ACGT enthalpies measured from the thermodynamic parameters for

. ) _ . . single-strand stacking reported in Chap. 8 of Ré0]. For
FIG. 3. (_Color onling .Interactlon energiesin arbitrary unit$ convenience, we rescale them into the rapgé,0] for con-
between pairs of nucleotides. We use the color code shown on the

right to represent interaction strengths. We obtained the single\-/emence' Note that the data are incomplete since there are no

. : : . xperimental measurements for the stacking enthalpies for
strand stacking energies from experimental data reported in Re .
[60] (Chap. 8, and the hydrogen bonding and cross-stacking ener! oly(G) or the combinations AC, GC, AG, GT, and CT. To

gies from the duplex stacking enthalpies used in the Turner RuIe@SS,ign the remgining stapking interactions, we u§e the fol-
[60] (Chap. 8. lowing assumptiong(i) Purines have stronger stacking inter-

actions;(ii) G's have stronger stacking interactions than A's

| is of the order of fracti £ mi ds f DNAand C’s have stronger stacking interactions than T’s or U’s.
ong 1s of the order ot Tractions o MICroSeconds for ss The rationale for(i) is purine’s larger size, while the ratio-

[66] or mlqroseconds for dsDN/E67]. The |mpI|cat|on for nale for (ii) is the greater stability of duplexes comprising
the dynamic rules implemented in the model is that after thPG_C bonds

translational motion of a nucleotide, the nucleotide confor- X
mation s |mmed|ately relaxed to the temperqture-speuﬂqeractions from the duplex stacking enthalpies used in the
eq_unlbrlum conform_athr[_89]. It follows that the time reso- Turner rules. As a first approximation, we consider that
lution of our madel is finite, hence phenomena taking place ross-stacking interactions only occur between purines. As

at ttlrge scales shorter than nanoseconds cannot be invesfl . base-stacking interactions, we rescale all the interac-
gated. tion values into the range-4,0].

We compute the hydrogen-bonding and cross-stacking in-

B. Interactions C. Chain motion

The model allows for different types of pairwise interac- A major challenge when modeling the kinetics of lattice
tions including nucleotide-nucleotide and nucleotide-solventpolymer chains is the implementation of thermal dynamics
These interactions are assumed to be short-ranged and thilmat (i) sample the whole phase spaf#), reproduce thermo-
restricted to elements occupying neighboring sites in the latdynamic equilibrium properties, andii) are realistic and
tice. In the following, we only describe interactions betweenconsistent with the kinetic features of the system being mod-
pairs of bases. Solvability effects due to salt concentratioled. The selection of realistic chain movements that pre-
can be effectively introduced by changing the values of theserve ergodicity and do not introduce spurious symmetries
interactions. into the conformations of the polymer is, thus, of the greatest

We consider two types afiucleotide-nucleotidénterac-  importance.
tions: complementarity interactions and stacking interac- In the past, there has been some discussion on whether the
tions. Complementarity interactions lead to Watson-Crickuse of Monte CarldMC) dynamics is a valid tool to inves-
(WC) pair formation through hydrogen bonds. These inter-tigate polymer kinetics, since it was initially formulated to
actions occur when the pins of a pair of neighboring nucledinvestigate static equilibrium properties. There are, however,
otides point to one another. Thus, complementarity interacplenty of examples in the polymer literature showing that by
tions are not possible between consecutive bases in a strarghoosing an appropriate set of rules of motion and the cor-
although they are possible between bases belonging to threct simulation time scale, the results obtained using MC
same strand as long as the rigidity conditions described ilynamics are as reliable as those obtained with molecular
Fig. 2 are not violated. We show in Fig(eéB the strength of dynamics[68]. In fact, there is evidence that simulations

these interactions. using MC sampling reproduce the dynamics observed ex-
The stacking interaction arises from the fact two baseperimentally[68,69.
“like” to “lie” on top of each other. In our model, two con- A number of algorithms using MC dynamics have been

secutive nucleotides are stacked when the pins are parallel fiwoposed over time to investigate polymers. One of the most
each other and the relative angle between the pin orientatiopopular is the Verdier-Stockmayer modél0], in which a

and the phosphodiester bond connecting the two nucleosidesimber of local moves can be performed depending on the
is greater than or equal to 60°. In general, this interaction isocal conformation of the monomers, namely the so-called
stronger for purines than for pyrimidines because of their‘crankshaft,” “end-bond,” and “kink-jump” movements. MC
larger size[60,61. However, the strength of the interaction simulations using these dynamics have been shown to repro-
also depends on the sequence and, in the case of dsDNA, dinice some real kinetic properties of homopolymers and pro-
the existence or not of base pairs above and below the coneins[59,69,7Q. However, this algorithm has problems in the
sidered one. In such a case, opposite bases belonging to eehkmpling of phase spa¢B9]. Specifically, the relaxation of
jacent bonded base pairs can be cross-statkied 3). kinks toward the center of the polymer chain is very slow
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TABLE I. Algorithm for the motion of a single chain.

1 Randomly select a monomen;.
If m, is not bonded to its own chain:
2.1  List all the empty neighboring sites that fulfill the stiffness constrains with at least one of the sites occupied by the two
neighboring monomers in the chaim_, andm,,.
2.2 Randomly select a new site from the list for the selected monomer to move to.
2.3 Select the direction of the chain that will reptate:
2.3.1 If the new position of the selected monomer is a neighbor of only the site occupied by thigleftneighboring
monomer in the chain, the monomers toward the riggft) end of the chain reptate.
2.3.2 If the selected site is a neighbor of the sites occupied byrmathandm,,, then:
2.3.2.1 If the new configuration satisfies stiffness constraints:
2.3.2.1.1  With probabilityp, only the selected monomer moves to the selected site. No other
monomers reptate.
2.3.2.1.2  With probability 1, select randomly one of the en@gght or leff), and allow the
monomers along the chain toward the selected end to reptate.
2.3.2.2 If the new configuration does not satisfy stiffness constraints with theitgft) neighboring monomer
in the chain, allow the monomers along the chain toward the(fligfit) end of the chain to reptate.
2.4 Move the selected monomer to the selected site and iterate the following steps for the monomers between the selected
monomer and the selected end.
2.4.1 For the following monomer, build a list of empty neighboring sites that satisfy stiffness conditions with the
previous monomers in the chain.
2.4.2 Select randomly a new site from the list for this monomer to move to.
2.4.3 If the selected site is a neighbor of the sites occupied by the two neighboring monomers in the chain and the new
configuration satisfies stiffness conditions, stop the reptation with probapility
3 If m; is bonded to its own chain, propose a change of orientation. Accept or reject the change usiagribeoLis algorithm.
3.1 If the change is accepted, follow the procedure described in step 2.
3.2  If the change is rejected, the pair of bonded monomers move simultaneously in the same direction while the remaining
monomers remain in the previous position.
3.2.1 List the pair of neighboring sites of the pair of bonded monomers that are neighbors of the consecutive monomers
in the chain and satisfy stiffness conditions.
3.2.2 Select randomly a pair of sites among the list and perform the movement.

4 Verify that none of the pin orientations overlaps with the backbone.
4.1 If a pin orientation overlaps with the backbone, select randomly a new orientation for that pin.
5 Compute the energy of the new configuration.
6 Accept or reject the change in configuration usingngeroPoOLIS algorithm.
7 For a number of times equal to the number of monomers in the chain, repeat the following steps:

7.1 Randomly select a monomes.

7.2 Randomly select a new orientation for the pimgfthat does not overlap with the backbone of the polymer.
7.3  Compute the new energy.

7.4 Accept or reject the change in orientation usingnEgrOPOLIS algorithm.

and the polymer can get locked in some configurations.  the propagation of kinks along the polyméfrable ). Our

With other chain “moves,” such as reptatid¢or “slither-  dynamics includes all the local movements considered in the
ing snake) [71] and “pivot relaxation’{72], the sampling of  Verdier-Stockmayer algorithm, as well as the propagation of
phase space is much improved and the relaxation towartlocal deformations” along the chaifsee Fig. 4. This gen-
equilibrium is much faster. However, the rules of motion eralized dynamics has the advantage that in order to generate
proposed in these algorithms are not “realistic” moves thaa new configuration, one does not have to study the local
happen in real polymers under dilute conditi¢68]. Never-  configuration of the monomers to see which local movement
theless, by constraining the reptation to a number of selecteid possible as it happens in the Verdier-Stockmayer algo-
internal monomers, a modified reptation algorithm can beithm. The only constraint for the new configuration is that
used to “propagate kinks” along the chain while keeping athe stiffness conditions be fulfilled.
correct description of the kinetic propertigg3,74. Because the time scales for the motion of the entire poly-

In our model, we use a generalized version of this “inter-mer and for the rotation of the pins differ by a factor of a
nal reptation” model which includes, but is not restricted t0,1000, we use a modified MC scheme that considers sepa-
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b
g ‘%pening }Q
T/

‘closing

FIG. 5. (Color onling Single-strand DNA hairpinga) Sample
configurations of a ssSDNA hairpin, comprising 25 nucleotides with
sequence GCGTT-EAACGC, on a three-dimensional triangular
lattice. Spheres with different color indicate nucleotides with differ-
ent bases: Orange for adenit®), purple for guaningG), yellow

for thymine (T), and blue for cytosindC). Note that the lattice
symmetries are almost unnoticeablb) Schematic illustration of

the transition between open and closed states for a hairpin loop. The
hairpin switches between open/coil and closed/native states with
characteristic rateBypening@ndKgiosing

IV. MODEL VALIDATION

In order to validate our model, we first perform basic tests
that ensure that our model displays a physically sound be-
havior. Next, we study static and kinetic properties of SSDNA

FIG. 4. (Color onling Chain motion on the lattice. In the panels, Nairpins, which are self-complementary single strands linked
different colors indicate the different planes to which the sites bePY @ noncomplementary lodfig. 5. Hairpin conformations
long: Blue for the central plane, red for the plane above, and greed’® ubiquitous in nature. In RNA, they dominate the second-
for the plane below. We label the central site “0” and we number theary structure and are responsible for the fast folding into the
twelve neighboring sites from 1 to 12. Site “13" is an example of anative structurg[11], while in DNA they are involved in
next nearest neighbor of the central site “0” that is a nearest neighimportant biological processes such as the regulation of gene
bor of sites “5” and “6.”(a) Initial configuration of a polymer chain expression[14,53 and DNA recombination[12,75 and
comprising three monomexsn;,m,,my) sitting on the nodes of a transposition[13,76. Importantly, hairpins are not static
three-dimensional lattice. To illustrate our algorithm for the motionstructures: In thermal equilibrium, they fluctuate between
of the chain, we consider the motion of the monomer (b) Pro-  open and closed statéFig. 5), providing an ideal model

jection onto the central plane of the polymer configuration and thegystem for the investigation of single-strand properties.
neighboring lattice sites. The color code is the same agajn

Monomerm, can move with equal probability to any of the ten ] ] )

empty neighboring sitegc) m, moves to site “7"(indicated by the A. Sampling of configuration space

black arrow. This site is a nearest neighbor of site “1” in whicH First, we test if the motion algorithm implemented in our
sits, but it is not a nearest neighbor of site “5” which is occupied byyodel is ergodid77]. To this end, we investigate the sam-
my. Since_ con_secgtive monomers in the polyme_r chgin must 0cCUPYling of configuration space for a polymer chain moving
neighboring sites in the lattice), must “reptate,” I.e., it MUStMOVe  5¢¢qrding to the algorithm described earlier and for different
tg a neighboring site Whlch is also a neighbor of site “7.” These arg slues ofp. We study two polymers comprising six and eight
sites{®0,” *6,” "11,” *13" } indicated by boxes. Purple boxes show monomers at infinite temperature. Our results indicate that

sites which cannot be occupidtD,” “6” }, because the final con- . . . .
. . i ) . .+ __the sampling of configuration space becomes more uniform
figuration would violate stiffness constraints. Black boxes indicate

acceptable sitef11,” “13"}. With equal probability, monomem, asp—0 (Fig. 6). Importantly, our analysis also suggests that

can move to either of the two acceptable sites. The two possibl&Or p as large "’%S 0.1, the sampl!ng_ of conflgu_ratlon space 1S
final configurations are shown in pané® and (d). already essentially uniform. This is of practical relevance

because even fqu of order 0.1, one already observes a sub-
stantial decrease in simulation times. This decrease arises
from the fact that in MC simulations, the energy difference
rately the translational motion of the beads and the rotationg}etyween configurations increases with an increasing number
motion of the pins. Specifically, we “split” the motion of the of moving monomers. Larger energy differences make it less
nucleotide chain into two step&) bead motion andii) pin  |ikely for the move to be accepted, resulting in longer equili-
motion. Table | describes in detail the algorithm by which wepration times.
implement the motion of beads and pins—note that the pins
thermalize regardless of whether the beads change their con-
figuration or not.
In the algorithm described in Table I, we consider single The radius of gyration Ris the mean distance of all
strands whose bases can form WC pairs. If we consider twB1onomers to the center of mass of the polymer,
single strands bonded to each other, an immediate extension L

of the algorithm is to consider the simultaneous motion of Rq= =SS VR-T) - (R-T),
the two bonded chains. Liz

B. Average radius of gyration
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FIG. 7. (Color onling (a) Average radius of gyratiofRg)~L”
versus polymer length. The solid line indicates the best fit to the
expected power-law behavigRy)~L”, obtaining »=0.75+0.07.

(b) Mean-squared displacemenj(¥) versus time for different poly-
mer lengthsL=48-197. Note that Xgrows linearly with time as
expected in a diffusive proce$g8]. (c) By scaling the data irib)

by D~L* with «=0.80£0.13, we are able to collapse all the data

FIG. 6. (Color online Sampling of the configuration space. onto a single curve. The data displayed in the plotg are averages
Sampling of the configuration space at infinite temperature for poly2Ver 5000 runs 100 000-150 000 time steps long upig.05.
mers comprisinga) six and (b) eight monomers. Different color
lines represent different values of the probabilityAt high tem- C. Diffusion
perature, one expects all configurations to be sampled with equal
rates(whose value is shown by the blue ljn&he average rate is

the number of time steps in the simulation divided by the total” "_, . L
number of configurations for the polymer. The number of configu- L™ [78]. In order to test this prediction, we measure the

rations for a polymer with sixeight monomers that sits on a three- mean's,quamd dlSpIgcemepg(X of the center of mass of
dimensional lattice and satisfies the stiffness constraints indicated '€ chain as a function of time,

Fig. 2 is 7500(186 792. For each polymer size, we collected sta- 2 2 o

tistics for 5000 0000 time steps. Our results demonstrate that the Xa(t) = ([R(H) - R(O)], (@)

polymer samples conformation space more uniformly for smallerwhere<...> indicates the averages over different dynamical
values ofp. (c) SkewnessS(p) of the distribution of sampling rates histories of the chair{f;} is the set of positions of the mono-

of the conformation space of the polymer for d'ﬁ?fef“ V‘.'"Iues'Of mers, and each time step corresponds to a single chain move-
The skewness measures the asymmetry of the distribution. For per-

fect sampling, we expect the distribution to be normal, thaSis, )ngeﬂtbln the diffusive regime, Xscales linearly with time:
=0. Forp=0, we findS=0.35(L=6) and S=0.59(L=8), in good 2 ' . .
agreement with this expectatiofd) Kurtosis K(p) of the distribu- We study the mean-squared dlsplace.ment versus. time for
tion of sampling rates of the conformation space of the polymer.poh,/mer,S of lengths =48 tOL:1_97' We find that the linear .
The kurtosis measures the decay rate of the tails of the distributiof€9iMe is reached after approximately 100 time steps. This
For a normal distribution, one ha&=3. Forp=0, we findk=2.6  linear growth is apparent in Fig.(B). By scaling all the

for L=6 andK=3.3 forL=8, in good agreement with this expecta- curves for the different polymer lengths, we find that the
tion. Note that bott andK take smaller values fqn<0.01 for the ~ diffusion coefficient scales d3~L", with «=0.80+0.13.
longer polymer. This suggests that as the length of the polymer

increases, the differences in the distributions for srpallith re- D. Nucleotide movements: Thermal dynamics

spect top=0 become smaller.

log, [ K(p)-K(0) ]

lostrrrs o il oo

Lattice configuration

A polymer comprising- monomers diffuses with a diffu-
sion constant that scales with the length of the chain

To test whether at finite temperatures our model samples

. the different configurations with Boltzmann statistics, we

R study the simplest hairpin structure possible: A-TTTT-T. This
> 1) hairpin, which comprises a one base-pair stem and a four-
base T-loop, is the simplest because T has the weakest inter-
actions of all nucleic bases.
wherelL is the number of monomers in the chain. The question of the uniform sampling of all possible con-

According to polymer theory79], the average radius of figurations for very large temperatures was already addressed
gyration(Ry) scales with the polymer lengtle., the num-  in Sec. IV A. We now calculate the equilibrium energy of the
ber of monomersas(Ry) ~ L, with »>0. In our model, we  hairpin as a function of temperatufEig. 8a)]. To simplify
have included volume constraints since a lattice site canndhe calculations, we set the stacking interactions of the T's to
be occupied by more than one monomer simultaneously, butero. Under these conditions, there are two possible interac-
we also have stiffness constraints and therefore we shoulibons with nonzero energy: the formation of the A-T WC pair
expect to obtain an exponent value somewhat larger than the the stem(energye=-1) and the stacking interaction be-
value for a self-avoiding random walk=0.6. Figure 7a)  tween the A and its neighboring(Energye=-2). Therefore,
shows that our simulations agree with theoretical expectathere are four possible energy values-3,-2,-1,0. The
tions, since the average radius of gyration for different poly-minimum energye=-3 corresponds to a closed hairpin with
mer lengths scales d&,) ~L", with »=0.75+0.07. A and T stacked. If the hairpin is open but A and T are
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FIG. 9. (Color onling Test of the equilibrium properties of a

FIG. 8. (Color onling (a) Equilibrium energy of a hairpin with ~ nairpin with sequence GGATAAZFTTATCC. We performed simu-
sequence A-TTTT-T. This hairpin has an internal loop comprisinglations using the parallel tempering methf&D] for the casesp
four T's and a stem with a single base pair A-T. Differently from =0-01, 0.05, and 0.1. Results correspond to averages over
Fig. 3, we consider that the stacking energy of the T's is zero. Undet0 000 000 MCS. Simulation temperatures in the raiiyé] were
these conditions, a hairpin configuration can only take four energylaPPed info absolute temperatures using the conversion factor
values,e=-3, when the hairpin is close@®-T hydrogen bond is  Tm /Tm . =1.71X10°° obtained in Fig. 10 for the ionic condi-
formed and A is stacked with its neighboring #=—2, when the A tions[Na']=1 M and[Mg**]:p M. (a) Spe_CIflc heat as a func’upn
is stacked with its neighboring T and the hairpin is open-1, of temperature calculated &9 the (_jerl\_/atlve of the__energy with
when the hairpin is closed but there is no stacking between the A8SPect to temperaturelE/dT (solid lines, and (i) c=((E?)
and its neighboring Te=0, for all other cases. Under these condi- —(E)?)/T? (symbol$ [77]. At equilibrium, fluctuation-dissipation
tions, the exact number of configurations for each energy leyel, relations must be fulfilled and the two methods must lead to equal
can be computed(b) Occupation numbetn;(T)) of each energy estimates. This is indeed what we observe. Furthermore, note that
level,i=0 to -3, as a function of temperature. Colored dots indicatéhe agreement between the two methods is excellent even in the
the numerical results obtained from averages over 5 000 000 Mont@€lting region when the heat capacity has its peak. We also checked
Carlo stepgMCS) using the parallel tempering MC meth¢80]. that at low temperature the hairpin reaches its minimum energy
Purple solid lines correspond to the theoretical expressions for theonfiguration. Thus, this test demonstrates that we reach equilib-
energye=3,gge T/ Z in (a), and the occupation numbém;(T)) rium in our simulations and_ that the equilibrium properties that we
=ge T/ Z in (b), where Z=3,g;e"T is the partition function. Measure are corredt) Melting curve for the values ob consid-

Note the excellent agreement between theoretical predictions arffed in(a). Note that the curves are insensitive to the specific value
simulation results. of p in the range considered. As expected, the fraction of broken

bonds in the stem goes from zero at low temperatindwere the

ked. th . f the hairoin is cl d but th low energy of the closed/native state dominates the partition func-
stacked, the energy is=-2. If the hairpin is closed but there tion) to 1 at high temperature@vhere entropy dominatgsBlue

is no AT stacking, the energy is=—1. In all other cases, the dashed lines indicate the melting temperature in both plots: At the

energy is 0. _ _ _ specific heat peak and at the point whére0.5. We obtain for the
By enumerating the possible pin conformations for eachyg casesr, =341+3 K.

of the the 7500 different lattice configurations for a polymer
with L=6, we are able to compute the degeneracy of eackemperatures, where hairpins are mostly open, to zero at low
energy level: 0, -1, -2, and -3. Hence, we can calculate thtemperatures, where open configurations dominate the parti-
expected occupation numbers—i.e., average population—dfon function. The temperature at whi#{T,)=0.5 defines
each energy level as a function of temperaftiig. 8b)]. At  the melting temperature, which is also the temperature at
high temperatures, one expects the energy to be dominatachich the melting curve has an inflection point and the spe-
by the configurations with zero energy, because of their largeific heat has a maximurf®1].
number, while at lower temperatures, one expects that the Next, we investigate if the values for the nucleotide inter-
dominant contribution comes from those configurations withaction energies that we derived from experimental data in
lower energies. As Fig. 8 demonstrates, we find excellenRef. [82] lead to “self-consistent” predictions of melting
agreement between the simulations and the theoretical préemperatures of hairpins with different sequences. We per-
dictions[90]. form simulations for more than 60 hairpins with randomly
sampled stem sequences with stems comprising four, five,
and six base pairs and loops comprising four T's. We show in
Fig. 10 the factor necessary to convert the melting tem-
In order to show that our model correctly describes hairperatures in our simulation]gﬁim into the melting tempera-
pin properties, we test whether equilibrium properties suchures obtained using th&,, server of Zukef1,81]. It is vi-
as melting temperatures and closing times are in agreemestially apparent that we obtain an approximately constant
with experimental observations. First, we demonstrate thatonversion factor for all those hairpin sequences.
our model is able to reach equilibrium and that we do ob- In order to better evaluate the fluctuations of the conver-
serve a transition from a high-temperature region dominategdion factor, we show in Fig. 1D) the relative fluctuations of
by open configurations to a low-temperature region domithe sequence-specific conversion factor to the average con-
nated by closed configuratioriBig. 9). We measure the av- version factor. Note that most cases are within 30% of the
erage fraction of broken bond¥T) as a function of tempera- average, and that the standard deviation is only 15%. More-
ture and find a typical melting curve that goes from 1 at highover, as shown in Fig. 16), these fluctuations are well de-

E. Melting temperatures
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FIG. 10. (Color onling Interaction Testing: Comparison of results from simulations with theoretical valaeRatio of the melting
temperature estimates= T/ TMFO'P, obtained with our model and with Zuker's DNA folding senfé;81] for different hairpins with
stems of four, five, and six bases long. For all hairpins, the loop comprises four T's. Melting temperatures from the folding server correspond
to the following ionic concentrationgNa*]=1 M and[Mg**]=0 M. Note that in the interaction tables of Fig. 3, we do not consider any
difference between oligonucleotides starting at th@i5the 3 end. The reason for this modeling choice is that the fluctuations observed in
the melting temperature obtained in each caseto®' [T(5')] and 3 to 5’ [T(3’)] sequences, were considerably smaller than the
fluctuations of the whole data set. Therefore, the melting temperature used in the data shown corresponds to the averdggsoTbeth
red solid lines correspond to the average factors for hairpins with stems comprising four, five, and six base pairs. Note that the fluctuations
are quite small(b) Relative fluctuations=(r-T)/r of the ratio of temperatures with respect to the méanl1.71x 10°3). The red line
represents the meas=-0.025 and the gray band represents the region within one standard deviation of thegndmmmalized distri-
bution of e. The red line corresponds to a Gaussian fit of zero mean and standard dewifidtb. We obtained the melting temperatures
from parallel tempering Monte Carlo simulations for temperatures in the range 0.06 to 1, and performing averagesléRes 8 10°, and
10x10° MCS for hairpins with stems comprising four, five, and six base pairs, respectively. All data correspond to the case
p=0.05, but we found no significant changes for different valueg. dthe analysis of different ionic conditions yields similar fluctuations
but different conversion factors, suggesting that salt concentration and temperature play a similar role in our model.

scribed by a Gaussian distribution with zero mean and stan- The simplest description for the folding/unfolding transi-
dard deviation 0.15, indicating that there is no apparent biaons of a hairpin is a two-state systefopen and closed
in our estimation of melting temperaturg32]. with a transition state at a constant energy barEgrTwo-

We checked that the fluctuations of the ratios between thetate models are commonly used to describe the kinetics of
experimental melting temperatures for hairpins with shortthe unfolding of single-domain proteins and hairpins
stems reported ifi60] and the values predicted by the server[16,20,83—-8% Within this description, which we suppose to
are ten times smaller than the fluctuations observed with thbe valid close tdl,,,, the relaxation constants are assumed to
ratios between the simulation results and the server predidtave an Arrhenius dependence on the barrier. In this sce-
tions. nario, the relaxation constant is described by

F. Relaxation rates k-=Ae Ea/T(l + Keé ' (4)

To validate the dynamics of our model, we compare theVhereKedT)=1/6(T)—1 is the equilibrium constant, is the
kinetic measurements obtained from simulations at a fixe@Psolute temperaturewe have sekg=1 for convenience
temperature with experimental results. Specifically, we mea@nd A is a pheno_Teno!oglcal constant rate. Figurébil
sure the relaxation ratek, for a hairpin of sequence Shows thak/[1+Kci(T)]is well fit by an exponential with a
GGATAA-T,-TTATC which was studied experimentally in Negative activation energy,~-3.5 kcal/mol consistent

[16]. The relaxation rate is defined as with the analysis of the experimental data for the same hair-
pin by Ansariet al. [16]. Negative activation energies are
K = Uciosing 1/ Topening (3)  believed to be a hallmark of zipping processes in which the

transition state has a lower energy than the coil configura-
tion. In such processes, the rate-limiting step is the formation
of a nucleus with a small number of hydrogen bonds—
between residues in polypeptides or bases in nucleic acids—
1/T. Note that in order to convert simulation rates to experi—that |mmed|ate!y Igads to the_ complete.fold_lng of the ”.‘0"
mental rates, one needs to use a factor of the order cﬁ(.:UIe [60]. 'Th|s' IS not unhkg the situation found “in
10° s/MCS. This value suggests a correspondence betweéwgommle.m'de o_llmer§86], protein-sheet hairping83,87,

one Monte Carlo step and one nanosecond, which is the timfénd proteina-helices[88,93.

scale at which nucleosides move and get thermal&&d.
Recall that in our algorithm nucleosides are thermalized
within one MCS, which is thus consistent with the experi- Understanding the configurational dynamics of nucleic
mental time scales. acids is relevant to many open questions such as the folding

Where 7¢osing @Nd Topening Stand for the closing and opening
times, respectively. In Fig. 14), we show that simulation

results fork, (black dot$ are in agreement with experimental
measurementgred dot$ and show a decrease in rate with

V. CONCLUSION
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TABLE II. Alternative Monte Carlo scheme for the dynamics of
a single-stranded nucleic acid.

1 Generate a new lattice configuration for the
polymer keeping the pin orientations fixed. That
is, go through steps 1 to 5 in the algorithm
described in Table I.

2 Thermalize the nucleotides in this new lattice
configuration. That is, change the orientation of
the pins following step 7 in the algorithm
described in Table I.

PR

2.9 3 3I.1 I 3{2 33 34
1/T (1000 K™

3 Compute the energy of this new global
e L AL e T configuration.
Bl g it 4 Accept or reject this new global configuration

according to theveTrROPOLIS algorithm.

suitable for the study of double-stranded as well as single-

x 10° [MCS™]

)]
T T T T T T T T

. stranded nucleic acids. We have demonstrated that the dy-
= 4 namical rules implemented are physically sound, and that
_thxg they are realistic. Specifically, we performed a number of
+ 3 comparisons of static and dynamic properties obtained in our
- R T N B simulations with those for ssDNA hairpins and found good
29 3 ol 82 33 84 35 agreement. All these results validate our model, making it a

1T x10° [K'1] suitable tool for the investigation of processes in which
single-strand properties are relevant, such as the formation of
complex structures such as H-pseudoknots which cannot be

FIG. 11. (Color onling Kinetic properties(a) Relaxation rates predicted by current models.

k. for the hairpin GGATAA-T;-TTATCC versus inverse tempera-
ture. Black circles correspond to the data obtained from the simu-
lations while red squares correspond to experimental data obtained

by Ansariet al. with the same hairpin for two different experimental h
setupg16,18. The dashed line corresponds to the fit to a two-state™: Modragon, and M. Zuker for numerous suggestions and

model with Arrhenius dependence of the relaxation rates(kpf. ~ discussions. R.G. and M.S. thank the Fulbright Program and
Our data were obtained by averaging over different dynamical histhe Spanish Ministry of Education and Science. J.W. grate-
tories (~200) for temperatures in the rangg,+0.07 T,,. We run  fully acknowledges the support of Grants No. RO1-
simulations with a wide range of MC& 500 000 to 1 800 000 ~ GMO054692 and No. R01-GM058617 from the NIH.
make sure that our estimates of the relaxation rates convergetl.A.N.A. gratefully acknowledges the support of the Searle
Simulation temperatures have been rescaled by a factor 1.8Readership Fund and the NIH.

X 1072 to convert the temperature into Kelvin. Note that we use a

different factor from that obtained in Fig. 10 to adjust to the experi- APPENDIX A: COMPARISON OF DIFFERENT MONTE

mantal conditions used in R€fL6]. In order to convert simulation CARLO SCHEMES

rates to experimental rates, one needs to use a factor of approxi-

mately 10°. This value suggests that the time scale of a single MC  To ensure the validity of the dynamic algorithm described
step is approximately one nanosecorii Two-state analysis. in Sec. Ill C, a further test is to compare the Monte Carlo
k/[1+Keg(T)] (black dot3 versus inverse temperatur iS  scheme that we use to alternative schemes that also consider
known from equilibrium measurementSig. 9) asKeT)=1/0(T)  separately bead and pin motion. A possible alternative is one
—1. The solid red line corrsponds to the fit to the expression in Edihat we denote scheme Bable 1l). This alternative scheme
(4). The two fitting parameters ag,, the activation energy, and,  shoyid, in principle, sample configurations with the same
a phenomenological constant rate. The parameters for the best iy jilibrium distribution as the scheme described in Table |.
areE,=-3.520.4 kcal/mol and=30+2 5. Indeed, Fig. 12 shows that for a hairpin of sequence

of RNA or the hybridization of two separate DNA strands in GGATAA-T,-TTATCC, parallel tempering simulatior{$0]
microarrays. A particularly challenging problem is to under-Yield identical melting and energy curves for the two

stand how base heterogeneity affects mechanical and kinetfghemes. However, Fig. (@@ shows that the two schemes
properties of nucleic acids at mesoscales. are not equivalent when performing simulations at a fixed

In order to provide a new window into these questions, intemperature. In particular, scheme B samples configurations
this paper we have described a novel mesoscopic model favith energies significantly lower than the value obtained
nucleic acid chains. The main feature of the model is that iwith parallel tempering simulations. This observation sug-
considers single-strand properties individually, making itgests that scheme B tends to sample the minimum energy

ACKNOWLEDGMENTS
We thank D. Aalberts, A. Ansari, C. A. Ng, D. B. Stouffer,
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|
20
Sequence

perature obtained from parallel tempering simulations averaging L
over 2x 10’ MCS. Black symbols correspond to the Monte Carlo
scheme defined for the mod@lable |) and red symbols correspond
to results for scheme BTable 1l). Note that the curves are practi- FIG. 13. Interaction optimization. Comparison of results from
cally undistinguishable(b) Energy versus temperature. Black and simulations with theoretical values for different sets of interactions.
red symbols correspond to parallel tempering results, following theRatio of the melting temperature estimat&g™ Th" P, obtained
color code in(a). Green and blue symbols correspond to singlewith our model and with Zuker’s J server[1,81] for different
temperature simulations in the transition region. Each point correhairpins with a stem comprising four base pairs and a loop com-
sponds to averages over 200 different histories 1 200 000 MC®rising four T's. Different symbols correspond to changing some of
long. Green symbols correspond to the scheme defined for ouhe interaction strength values shown in Fig. 3 to which black sym-
model and blue symbols correspond to scheme B. Note that whilols (O) correspond. Blue symbolg\) correspond to reducing the
results for the model scheme show an excellent agreement with th&-C bond strength. Yellow symbolsd) correspond to increasing
parallel tempering results, results for scheme B show average endglhe A-T bond strength. Green symbdl¢ ) correspond to decreas-
gies far below the parallel tempering curve. ing the GC stacking strength. Red symb(l3$) correspond to per-
forming the three previous changes simultaneously. Note these

conformations of each different lattice configuration, and aé:hanges of the parameters result in a decrease of the fluctuations,

a result gets easily “trapped” in local minima. It follows that %’? t:nlnémugcv%nar(;ce Cogeé'?:on?'nﬁ. to (.:htang'rt'_g the ftrengthv\‘/)f
this alternative scheme is not as good a tool to investigate thgbtaiﬁg dst,heT A f?QmS’ :lrlllel tenf E(Ii‘(:ril’llr(]ﬁgS()TSeir:’?Li;(t)irc])?] saa\?enrze.- e
DNA dynamics[94]. m P p g

ing over 5x 10° MCS, with p=0.05.

10 30

APPENDIX B: OPTIMIZATION OF THE INTERACTION

PARAMETERS with stems rich in AT pairs are less stable than they should

be. This suggests that one may reduce the fluctuations of the

To provide better agreement between the simulation melttemperature ratios by introducing, for instance, the following
ing temperatures and the melting temperatures predicted byodifications: (i) reducing the GC bond strengtkij) in-
Zuker's server[1], we need to optimize the interaction creasing the AT bond strength, aiiii) reducing the GC
strengths presented in Fig. 3 and used in our simulations. Tstacking strength. Figure 13 shows the variation of the tem-
this end, we must define a cost function and select the set @lerature ratios =T 5"/ TMFOD with respect to the nominal
parameters that minimizes it. In our case, an obvious choicease (Fig. 10—black dots—for the following casesi)—
for the cost function is the standard deviation of the relativeblue triangles,(ii)—left yellow triangles, (iii)—green dia-
fluctuations of the ratios between simulation and theoreticamonds, and changing the three parameters simultaneously—
melting temperaturegFig. 10. This is, however, a time- red squares. Note that these changes of parameters result in a
consuming task that we have not concluded yet. decrease of the fluctuations, the best choice being the simul-

To improve the parameter choices, we analyze the meltinganeous change of the strength of AT bonds, GC bonds, and
temperatures for hairpins with stems comprising four bas&C stacking interactions. To obtain the best set of param-
pairs. We find out that hairpins whose stems are rich in Gters, one needs to obtain the overall minimum for the vari-
pairs are more stable than they should be, whereas hairpisice among all the possible sets of parameters.
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