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Patterns of deliberate human activity and behavior are of utmost
importance in areas as diverse as disease spread, resource alloca-
tion, and emergency response. Because of its widespread avail-
ability and use, e-mail correspondence provides an attractive proxy
for studying human activity. Recently, it was reported that the
probability density for the inter-event time � between consecu-
tively sent e-mails decays asymptotically as ���, with � � 1. The
slower-than-exponential decay of the inter-event time distribution
suggests that deliberate human activity is inherently non-Poisso-
nian. Here, we demonstrate that the approximate power-law
scaling of the inter-event time distribution is a consequence of
circadian and weekly cycles of human activity. We propose a
cascading nonhomogeneous Poisson process that explicitly inte-
grates these periodic patterns in activity with an individual’s
tendency to continue participating in an activity. Using standard
statistical techniques, we show that our model is consistent with
the empirical data. Our findings may also provide insight into the
origins of heavy-tailed distributions in other complex systems.

complex systems � human activity � hypothesis testing � point process

The analysis of social and economic data has a long and
illustrious history (1–3). Despite their idiosyncratic complex-

ity, a number of striking statistical regularities are known to
describe individual and societal human behavior (4–7). These
regularities are of enormous practical importance because they
provide insight into how individual behaviors influence social
and economic outcomes. Indeed, much of the current research
on complex systems aims to quantify the impact of individual
agents on the organization and dynamics of the system as a whole
(8, 9). Before we can predict how individuals affect, for example,
the organization of systems, it is paramount to understand the
behavior of the individual agents.

The current availability of digital records has made it much
easier for researchers to quantitatively investigate various as-
pects of human behavior (10–21). In particular, e-mail commu-
nication records are attracting much attention as a proxy for
quantifying deliberate human behavior because of the omni-
presence of e-mail communication and availability of e-mail
records (13, 14, 16, 18). The data, however, do not provide a
detailed record of all of the activities in which each individual
participates; we do not know, for instance, when an individual is
sleeping, eating, walking, or even browsing the web. The result-
ing uncertainty in deliberate human activity thus poses a fun-
damental challenge to quantifying and modeling of human
behavior.

Researchers commonly account for uncertainty or lack of
information through stochastic models. One of the simplest
stochastic models for human activity is a point process in which
independent events occur at a constant rate �. Such processes are
referred to as homogeneous Poisson processes, and they are used
to describe a large class of phenomena, including some aspects
of human activity (22). Homogeneous Poisson processes have
two well-known statistical properties: the time between consec-
utive events, the inter-event time �, follows an exponential
distribution, p(�) � �e���, and the number of events NT during

a time interval of duration T time units follows a Poisson
distribution with mean �T.

Several recent studies of deliberate human activity, including
e-mail correspondence, have focused on the former property.
These studies have reported that the empirical distribution of
inter-event times decays asymptotically as a power law, p(�) �
���, with exponent � � 1 (13, 14, 18, 23). Other studies have
identified a similar power-law scaling in the inter-event time
distribution of many other facets of human behavior, such as file
downloads (10–12), letter correspondence (15, 17, 18), library
usage (17), broker trades (17), web browsing (17, 19), human
locomotor activity (20), and telephone communication (21).
These observations are in stark contrast to the predictions of a
homogeneous Poisson process, suggesting that a more suitable
null model with which to compare mechanistic models of human
activity is a truncated power-law model with scaling exponent
� � 1.*

The heavy-tailed nature of the distribution of inter-event times
prompts us to search for the mechanisms responsible for its
emergence. Two main classes of mechanisms can be considered:
(i) human behavior is primarily driven by rational decision
making, which introduces correlations in activity, thereby giving
rise to heavy tails;† (ii) human behavior is primarily driven by
external factors such as circadian and weekly cycles, which
introduces a set of distinct characteristic time scales, thereby
giving rise to heavy tails.‡ Whereas the former interpretation has
been shown to give rise to a truncated power-law distribution of
inter-event times, the latter has been rejected by some authors
(17, 18). Indeed, even though Hidalgo (24) investigated a model
with seasonal changes in activity rates that is able to generate
data with an approximate power-law decay in the distribution of
inter-event times with exponents � � 2 or � � 1, the � � 1 case
requires a specific relationship between the rates of activity �i

and the corresponding duration of the seasons Ti over which each
rate holds. It has therefore been argued that seasonality alone
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*For simplicity, we use a truncated power law with an exponent of � � 1 as our null model.
Similar conclusions are reached when the power-law scaling exponent is fit to the data or
when other heavy-tailed null models [e.g., log-normal or log-uniform distributions (16)]
are considered.

†If humans make decisions based on their own previous memories, then we might expect
that humans are heavily influenced by recent events. That is, the probability �dt that an
event will happen in a time interval dt is not constant but is, instead, a decreasing function
of the time elapsed since the last event (18).

‡This interpretation does not rely on highly-competent human behavior and allows for the
possibility that human activity, and hence the time dependence of �, is modulated by
instinct, the environment, or social stimuli.
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can only robustly give rise to heavy-tailed inter-event time
distributions with exponent � � 2 (17).

Here, we demonstrate that the distribution of inter-event times
in e-mail correspondence patterns display systematic deviations
from the truncated power-law null model because of circadian and
weekly patterns of activity. We subsequently propose a mechanistic
model that incorporates these observed cycles, and a simulated
annealing procedure to nonparametrically estimate its parameters.
We then use Monte Carlo hypothesis testing to demonstrate that
the predictions of our model are consistent with the observed
heavy-tailed inter-event time distribution. Finally, we discuss the
implications of our findings for modeling human activity patterns
and, more generally, complex systems.

Empirical Patterns
We study a database of e-mail records for 3,188 e-mail accounts
at a European university over an 83-day period (23). Each record
comprises a sender identifier, a recipient identifier, the size of
the e-mail, and a time stamp with a precision of 1 s. We
preprocess the dataset and identify a set of 394 accounts that
provide enough data to quantify human activity and that are
likely neither spammers nor listservs [see Preprocessing of the
Data in supporting information (SI) Text and Fig. S1].

To gain some intuition about e-mail activity patterns, let us
consider a fictitious student, Katie.§ Katie arrives at the univer-

sity 20 min before her Thursday morning class. During this time,
she decides to check her e-mail and sends 3 e-mails. Katie checks
her e-mail after lunch and sends a brief e-mail to a friend before
her next class. Later that evening, Katie sends 4 more e-mails
once she has finished her homework. Katie does not check her
e-mail again until the following day when she sends e-mails
intermittently between attending classes, completing homework
assignments, and meeting social engagements. Katie spends the
weekend without e-mail access and doesn’t send another e-mail
until Monday. Katie’s e-mail activity, which is similar to many
e-mail users, is both periodic and cascading. That is, there are
periodic changes in her activity rate, which account for her sleep
and work patterns, and there are cascades of activity—active
intervals—of varying length when Katie primarily focuses on
e-mail correspondence (Fig. 1).

If our intuition about deliberate human activity is correct, then
the periodic pattern of activity should manifest itself in the inter-
event time statistics, particularly when compared with the predic-
tions of the truncated power-law null model that does not account
for temporal periodicities (see Null Model in SI Text). Specifically,
we anticipate that e-mail users typically send e-mails during the
same 8-hour periods of the day. We therefore expect the data to
have significantly more inter-event times between 24 � 8 h—the
time required to send e-mails on consecutive workdays—than
the truncated power-law model predictions. We therefore expect
that the null model underestimates the number of inter-event times
between 16 and 32 h. Because of the normalization of the proba-
bility density, the truncated power-law model will overestimate
other inter-event times. These predictions are all confirmed by the

§We suspect that most users had access to their e-mail only at the university because the
data are obtained from a European university prior to 2004 (J. P. Eckmann, personal
communication).
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Fig. 1. Example of a periodic and cascading stochastic process. (A) Expected probability of starting an active interval during a particular day of the week pw(t).
We depict 2 weeks to emphasize that this pattern is periodic and that every week is statistically identical to every other week. We surmise that e-mail users are
more likely to send e-mails on the same days of the week, a consequence of regular work schedules. (B) Expected probability of starting an active interval during
a particular time of the day pd(t). Again, we depict 14 days to emphasize that this pattern is periodic and that every day is statistically identical to every other
day. We surmise that e-mail users are more likely to send e-mails during the same times of the day, a consequence of circadian sleep patterns. (C) The resulting
activity rate �(t) for the nonhomogeneous Poisson process. The activity rate �(t) is proportional to the product of the daily and weekly patterns of activity where
the proportionality constant Nw is the average number of active intervals per week (Eq. 1). (D) A time series of events generated by a nonhomogeneous Poisson
process. Each event in this time series initiates a cascade of additional events, an active interval. (E) Schematic illustration of cascading activity. During
cascades—active intervals—we expect that an individual will send Na additional e-mails according to a homogeneous Poisson process with rate �a. We denote
the start of active intervals with a dashed line to signify that the activity is no longer governed by the nonhomogeneous Poisson process rate �(t). Once the active
interval concludes, e-mail usage is again governed by the periodic rate �(t). We refer to the collection of active intervals as the active interval configuration C

throughout the manuscript. (F) Observed time series. Because the data do not isolate intervals of activity, the observed time series is the superposition of both
the nonhomogeneous Poisson process time series and the active interval time series.
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data, suggesting that periodicity is a fundamental aspect of human
activity (Fig. 2).

Model
We propose a model of e-mail usage that incorporates the
hypothesized periodic and cascading features of human activity.
We account for periodic activity with a primary process, which
we model as a nonhomogeneous Poisson process. Whereas a
homogeneous Poisson process has a constant rate �, a nonho-
mogeneous Poisson process has a rate �(t) that depends on time.
In our model, the rate �(t) depends on time in a periodic manner;
that is, �(t) � �(t � W), where W is the period of the process.
Consistent with our observations (Fig. 3), we relate the rate of
the nonhomogeneous Poisson process to the daily and weekly
distributions of active interval initiation, pd(t) and pw(t):

��t� � Nwpd�t�pw�t�, [1]

where the period W is 1 week, and the proportionality constant
Nw is the average number of active intervals per week.¶

We further assume that each event generated from the
primary process initiates a secondary process, which we model
as a homogeneous Poisson process with rate �a (see Additional
Evidence for a Homogeneous Poisson Cascade in SI Text). We
refer to these ‘‘cascades of activity’’ as active intervals, during
which Na additional events occur where Na is drawn from some
distribution p(Na). Once the Na events have occurred in the
active interval, the activity of the individual is again governed by
the primary process defined by Eq. 1. Our model thus mimics

how individuals like Katie use e-mail: Katie sends e-mails
sporadically throughout the day, but once she starts checking her
e-mail, it is relatively easy to send additional e-mails in rapid
succession. We refer to the resulting model as a cascading
nonhomogeneous Poisson process.�

Results
To compare our model with the empirical data, we first need to
estimate the parameters of our model from the data. Ideally, the
data would specify which events belong to the same active
intervals—the active interval configuration C—so that we could
estimate the distributions pd(t), pw(t), and p(Na). The data we
analyze, however, do not specify the actual active interval
configuration Co, so it is not evident whether, for example, p(Na)
should be described by a normal or exponential distribution.

Because we do not know a priori the functional form of the
activity pattern in the cascading process, we cannot use the
formalism implemented by, for example, Scott and coworkers
(28, 29). Instead, we introduce a new method that enables us to
nonparametrically infer the empirical distributions pd(t), pw(t),
and p(Na) from the data.

Given a particular active interval configuration C, we can easily
calculate all of our model’s parameters and compare its predic-
tions with the empirical data: Nw is the average number of active
intervals per week; pd(t) and pw(t) are the probabilities of starting
an active interval at a particular time of day and week, respec-
tively; the active interval rate �a is the inverse of the average
inter-event time in active intervals; and the probability of Na
additional events occurring during an active interval p(Na) is
estimated directly from the active interval configuration (Fig. 3).

¶In specifying Nw as the average number of active intervals per week, we are implicitly
assuming that the fraction of time spent in active intervals is very small. We have verified
that this is the case for all users under consideration. Also, it is important to choose the time
step 	t in the binning of the empirical pd(t) to be sufficiently small such that the probability
of an event occurring at time t is �(t)	t 

 1. We choose 	t � 1/Nw hours, which meets this
criterion while still maintaining computational feasibility.

�Our model is similar in spirit to the Neyman–Scott cascading point process (25, 26) and the
Hawkes self-exciting process (27), except that in our model (i) the primary process is
modulated periodically by a nonhomogeneous rate, and (ii) the active intervals are
nonoverlapping.

A

C

B

D

E

Fig. 2. Systematic deviations of the data from the truncated power-law null model due to periodic patterns of human activity. The vertical lines at � � 10 hours
is meant as a guide to the eye. (A and B) Comparison of truncated power-law model (red line) with empirical data (open squares) for Users 2650 and 467 from
the dataset (23). Lines of best fit are estimated by minimizing the area test statistic (see Null Model in SI Text). (C and D) Log-residual, R � ln (p�(� �̂)/p(�)) of
the best-fit truncated power-law distribution model �. The shaded region denotes inter-event times where the null model underestimates the data. If the
empirical inter-event time distribution were well-described by the truncated power-law null model, the log-residuals R would be small and normally distributed,
particularly in the tail of the distribution. However, the log-residuals R have large systematic fluctuations in the tail of the inter-event time distribution (� � 0.25
hours) where the power-law scaling approximately holds. (E) Conditional probability density p(R �) obtained for all 394 users under consideration. The average
log-residual at each inter-event time is represented by the dashed line. Both the average log-residual and conditional probability density indicate that nearly
all users under consideration systematically deviate from the truncated power-law null model, as anticipated from the arguments in Empirical Patterns.
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We then manipulate the active interval configuration C to find
the active interval configuration Ĉ that gives a best estimate of
the observed inter-event time distribution (see Methods). This
method allows us to infer the best-estimate distributions p̂d(t),
p̂w(t), and p̂(Na), given the data and our proposed model, without
making any assumptions on their functional forms.

We next compare the predictions of the cascading nonhomo-
geneous Poisson process with the empirical cumulative distri-
bution of inter-event times P(�) for all 394 users under consid-
eration in the present study (see SI Appendix). Because we are
using the empirical data to estimate the parameters for our
model—that is, the estimated parameters depend on the da-

ta—we must use Monte Carlo hypothesis testing (30, 31) to
assess the significance of the agreement between the predictions
of our model and the empirical data (see Monte Carlo Hypothesis
Testing in SI Text). The visual agreement of our model’s pre-
dictions are confirmed by P values clearly above our 5% rejection
threshold (Fig. 4).

In fact, the cascading nonhomogeneous Poisson process can only
be rejected at the 5% significance level for 1 user, indicating that our
model cannot be rejected as a model of human dynamics. By
comparison, the truncated power-law null model is rejected at the
5% significance level for 344 users. Indeed, the null model is always
rejected for many more users than the cascading nonhomogeneous

S M T W T F S
0.0

0.1

0.2

0.3

0.4

p w
(t

)

S M T W T F S S M T W T F S

Day of week
S M T W T F S

0 6 12 18 24
0.0

0.1

0.2

p d(t
)

0 6 12 18 24 0 6 12 18 24

Time of day
0 6 12 18 24

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

p(
N

a)

0 1 2 3 4 5 0 1 2 3 4 5

Number of additional events per active interval
0 1 2 3 4 5

User 2570
81 e-mails sent

Nw = 4.7 active intervals/week

ρa = 3.1 events/hour

User 2881
116 e-mails sent

Nw = 7.3 active intervals/week

ρa = 1.7 events/hour

User 2650
288 e-mails sent

Nw = 15.0 active intervals/week

ρa = 3.8 events/hour

User 467
345 e-mails sent

Nw = 21.9 active intervals/week

ρa = 10.7 events/hour

A

B

C

Fig. 3. Patterns of e-mail activity for 4 users in increasing order of e-mail usage (see SI Appendix for the same analysis for all 394 users). These e-mail users
exemplify the e-mail usage patterns that are typical of the users in the dataset. We use simulated annealing to identify active intervals and calculate the
parameters for the cascading nonhomogeneous Poisson process (see Methods). The red distributions and text in A and B correspond with the parameters for
the primary process, a nonhomogeneous Poisson process, whereas the blue distributions and text (C) correspond with the parameters for the secondary process,
a homogeneous Poisson process. (A and B) Active intervals are much more likely during weekdays rather than weekends and during the daytime rather than
the nighttime. These prolonged periods of inactivity lead to the heavy tail in the inter-event time distribution. (C) Small inter-event times, in contrast, are
characteristic of active intervals. One can interpret active intervals in several ways: Larger �a may indicate that a user is a more proficient e-mail user; larger �Na
/�a

may suggest that an individual has a larger attention span; Na/�a may be the time that an individual has to check e-mail before their next commitment.
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Fig. 4. Comparison of the predictions of the cascading nonhomogeneous Poisson process (red line) with the empirical cumulative distribution of inter-event
times P(�) (black line) for the same users from Fig. 3 (see SI Appendix for the same analysis for all 394 users). We use the area test statistic A (Eq. 2) and Monte
Carlo hypothesis testing to calculate the P value between the model and the data (see Monte Carlo Hypothesis Testing in SI Text). As these figures are presented,
the area test statistic A is the area between the two curves. Not only do the predictions of the cascading nonhomogeneous Poisson process visually agree with
the empirical data, but the P values indicate that it cannot be rejected as a model of e-mail activity at a conservative 5% significance level.
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Poisson process regardless of the rejection threshold selected, and
our model does not display the large systematic deviations from the
data that are observed for the truncated power-law null model
(Fig. 5)

Discussion
Our results clearly demonstrate that circadian and weekly cycles,
when coupled to cascading activity, can accurately describe the
heavy tails observed in e-mail communication patterns. The
question then is, would rational decision making, together with
circadian and weekly cycles, be equally able to describe the
statistical patterns observed for e-mail communication? Even if
the answer to this question is affirmative, parsimony suggests
that rational decision making is not a necessary component of
human activity patterns, given our simpler explanation.

In addition to providing a good description of e-mail commu-
nication patterns, we surmise that our model is readily applicable
to many other conscious human activities. For instance, most
people make telephone calls sporadically throughout the day.
After a telephone call has been made, it is effortless to make
another telephone call. Similarly, individuals run errands
throughout the month. Once an individual runs one errand, it is
easier to run another errand during the same trip than it is to run
errands again the following day. Both of these anecdotes are
illustrative of the way humans tend to optimize their time and
effort to accomplish the tasks in their daily routines, a process
that is captured by the periodic and cascading mechanisms in our
model.

The particular periodic and cascading features that are incor-
porated into our model depend on the activity under consider-
ation. For instance, sexual activity is influenced by menstrual
cycles (32), and airline travel is influenced by seasonality (33).
Furthermore, our model can also be generalized to cases in
which the parameters are not stationary. This may be important,
for instance, in the case of Darwin and Einstein’s letter corre-
spondence in which the number of letters sent per year increased
100-fold over 40 years (15, 18).

Although our model is only designed to account for a single
activity (e-mail correspondence), it can easily be extended to
incorporate the multitude of activities in which any individual
participates. To facilitate the inclusion of additional activities, it
is useful to interpret our model as a nonstationary hidden
Markov point process (28, 34). Within this framework, an

individual switches between any two activities i and j with some
probability defined by a nonstationary Markov transition matrix
Tij(t) that depends on time t. For instance, our model can be
redefined as a nonstationary hidden Markov point process that
switches between two states: a state in which an individual is not
composing e-mails and a state in which an individual is com-
posing e-mails. Predictions of models that incorporate more than
one activity can then be verified against data that records several
activities for a single individual.

Our model further suggests an experiment (35) that not only
records when an individual has sent an e-mail, but also when that
individual is using a computer or actively using an e-mail client.
This additional data would provide direct empirical evidence for
describing active intervals. In the absence of such data, we have
developed a simulated annealing procedure that allows us to
nonparametrically infer the hidden Markov structure of our
model, providing insight into how to compare our model with
other cascading point processes (25, 26).

Although our model provides an accurate description of when
an e-mail is sent, a question left unaddressed is to determine who
the probable recipient of that e-mail is going to be. For instance,
one might speculate that e-mails are sent randomly with some
Poissonian rate to acquaintances or individuals who share
common interests. Alternatively, it is plausible that e-mails are
sent based on a perceived priority of important tasks, perhaps in
response to previous correspondence (14). When combined with
our model that statistically describes when individuals send
e-mails, quantifying the likely recipient of an e-mail will provide
an important step toward describing how the structure of e-mail
and social networks evolve.

Our study also provides a clear demonstration of how hypothesis
testing (30, 36) can objectively assess the validity of a proposed
model—a procedure we vehemently advocate. Using this method-
ology, we demonstrate that although both models reproduce the
asymptotic scaling of the observed inter-event time distribution, our
model is consistent with the entire inter-event time distribution,
whereas the truncated power-law null model is not.

The consequences of our findings are clear; demonstrating
that a model reproduces the asymptotic power-law scaling of a
distribution does not necessarily provide evidence that the model
is an accurate mechanistic description of the underlying process.
Indeed, there is mounting evidence that some purported power-
law distributions in complex systems may not be power laws at
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Fig. 5. Model comparisons. (A) Summary of the hypothesis-testing results for the cascading nonhomogeneous Poisson process and the truncated power-law
null model for the 394 users under consideration. For each user, we compute the P value between their inter-event time distribution and the predictions of each
model (see Monte Carlo Hypothesis Testing in SI Text). We reject a model for a particular user if the P value is less than the 5% rejection threshold (gray shaded
region). At this significance level, the cascading nonhomogeneous Poisson process can be rejected for 1 user, whereas the truncated power-law null model can
be rejected for 344 users (see Null Model in SI Text). Note that if the data were actually generated by one of the models tested, we would expect to see a uniform
distribution of P values (dashed line). Because this is very nearly the case for the cascading nonhomogeneous Poisson process, this provides additional evidence
that our model is consistent with the data. (B) Conditional probability density p(R �) obtained for all 394 users under consideration. The average log-residual
at each inter-event time is represented by the dashed line. In contrast to the results in Fig. 2E, we find no systematic deviations between the model predictions
and the data in the tail of the inter-event time distribution where the power-law scaling approximately holds.
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all (37–39). There may be a common explanation for these
apparent power laws: Complex systems are inherently hierar-
chical, but the distinct levels in the hierarchy are difficult to
distinguish (40). In the case of e-mail correspondence, for
example, the active intervals are not recorded in the data,
thereby concealing the various scales of e-mail activity. This
demonstrates how the mixture of scales of activity can give rise
to scale-free activity patterns. We suspect that similar mixture-
of-scales explanations (41–45) may provide a basis for the
reported universality of heavy-tailed distributions in complex
systems.

Methods
Area Test Statistic. We quantify the agreement between a model �(�) with
parameters � and dataset D by measuring the area A between the empirical
cumulative distribution function PD(u) and the model cumulative distribution
function P�(u �):

A � ��PD�u� � PM�u����du. [2]

We specify u � ln �, which is roughly uniformly distributed, to improve the
numerical efficiency of our simulated annealing procedure. The area test
statistic is advantageous because it is easy to interpret, and it retains more
information about the distribution than many other test statistics (see Area
Test Statistic in SI Text).

Identifying Active Intervals. If we knew the actual active interval configuration
Co, it would be straightforward to compute the parameters �o �
{Nw,pd(t),pw(t),�a,p(Na)} of the cascading nonhomogeneous Poisson process.
The data, however, do not identify the actual active interval configuration Co,
so we must use heuristic methods (see Simulated Annealing Procedure in SI
Text) to determine the best-estimate active interval configuration Ĉ, from
which we can compute the best-estimate parameters �̂. We use simulated

annealing to minimize the area test statistic A (Eq. 2) for the inter-event time
distribution. Thus, identifying active intervals that are consistent with our
expectations for our model reduces to finding the best-estimate active inter-
val configuration Ĉ, which minimizes the area A between the empirical data
and the predictions of the cascading nonhomogeneous Poisson process.

Our simulated annealing procedure is as follows. Starting from a random
active interval configuration C in which adjacent events are randomly as-
signed to the same active interval, we compute the parameters � of the
cascading nonhomogeneous Poisson process, then we numerically estimate
the cumulative distribution P�(u �), and, finally, we measure the area test
statistic A(C) of the active interval configuration C. The active interval config-
uration is modified to a new configuration C� by either merging two adjacent
active intervals or by splitting an active interval. If the new configuration C�
reduces the area test statistic, then the new configuration is unconditionally
accepted. Otherwise, the configuration is conditionally accepted with prob-
ability exp(�(A(C�) � A(C ))/T), where T is the effective ‘‘temperature’’ mea-
sured in units of the area test statistic A. After attempting 2N configurations
at each temperature so that each pair of N consecutive events might be
merged and split, we reduce the temperature T by 5% until the active interval
configuration settles at the best-estimate Ĉ without moving for 5 consecutive
cooling stages.

Throughout the simulated annealing procedure, we track the lowest area
test statistic configuration. If the system has settled in a configuration that is
not the lowest area test statistic configuration, the system is placed in the
lowest area test statistic configuration, and the system is cooled further. We
have verified that our simulated annealing procedure accurately identifies
active intervals and estimates parameters � in synthetically generated cascad-
ing nonhomogeneous Poisson process datasets (see Simulated Annealing
Procedure in SI Text and Fig. S5).
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17. Vázquez A, Oliveira JG, Dezsõ Z, Goh KI, Kondor I, Barabási AL (2006) Modeling bursts

and heavy tails in human dynamics. Phys Rev E 73:036127.
18. Vázquez A (2006) Impact of memory on human dynamics. Physica A 373:747–752.
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