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In this paper we study the cooperative behavior of agents playing the Prisoner’s Dilemma game in
random scale-free networks. We show that the survival of cooperation is enhanced with respect to
random homogeneous graphs but, on the other hand, decreases when compared to that found in
Barabdsi—Albert scale-free networks. We show that the latter decrease is related to the structure
of cooperation. Additionally, we present a mean field approximation for studying evolutionary
dynamics in networks with no degree-degree correlations and with arbitrary degree distribution.
The mean field approach is similar to the one used for describing the disease spreading in complex
networks, making a further compartmentalization of the strategists partition into degree-classes.
We show that this kind of approximation is suitable to describe the behavior of the system for
a particular set of initial conditions, such as the placement of cooperators in the higher-degree
classes, while it fails to reproduce the level of cooperation observed in the numerical simulations
for arbitrary initial configurations.
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the observed survival of cooperative behavior when

The ubiquity of cooperation at all scales of
life’s organization from genes, through multicellu-
lar organisms, to animal and human societies, has
not been immediately accommodated in the theory
of evolution [Nowak, 2006]. In fact, to understand
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selfish actions provide a higher reproductive success
(fitness) several mechanisms (nonmutually exclu-
sive) have been proposed: (a) Kin selection, based
on genetic relatedness, (b) group selection, in which
the demes (groups) instead of organisms are the
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entities on which natural selection acts upon, and
(c) reciprocal altruism, which includes direct reci-
procity (through repeated interactions) and diverse
types of indirect reciprocity (through reputation,
scoring, punishment, signaling, etc. ..).

Perhaps the simplest (i.e. less demanding)
mechanism, termed lattice (or network) reciprocity,
consists of assuming that each agent interacts
only with its neighbors as given by a network of
social contacts. Early pioneering numerical work by
Nowak and May [1992] on the evolutionary dynam-
ics of the Prisoner’s Dilemma game (see below) in
two-dimensional regular (square) lattices, showed
that the cooperative phenotype was not driven to
extinction. This result stimulated much work pay-
ing attention to the evolution of cooperation in
graph-structured populations [Szabé & Fath, 2007].
It has been well recognized that graph topologies
play a crucial role in providing positive feedback
evolutionary mechanisms that facilitate the asymp-
totic survival of cooperation. Therefore, it is neces-
sary to change the benchmark of evolutionary game
theory from unstructured or “well-mized popula-
tions to the more realistic case of complex networks.

Interactions in animal and human social sys-
tems are, in general, modeled on sets of individu-
als playing diverse social dilemmas games. In these
games, players can adopt two possible strategies:
cooperation (C) and defection (D). In the clas-
sical setting, a player 7 plays with all the other
individuals in the system accumulating, in each of
these games, a payoff that depends on both its
strategy and the one adopted by its correspond-
ing opponent. In particular, both C and D receive
R (reward) under mutual cooperation and P (pun-
ishment) under mutual defection, while C receives
S (suckers) when confronted to D, which in turn
receives T (temptation). The specific values that
take the latter payoffs define the specific social
dilemma we are dealing with. From now on, we will
consider the case 7' > R > P > S so that we will
focus on the Prisoner’s Dilemma game [Hamilton,
1964; Axelrod & Hamilton, 1981; Hofbauer & Sig-
mund, 1998; Hofbauer & Sigmund, 2003; Nowak &
Sigmund, 2005].

Once every agent has played the game with the
rest of the population, i.e. has completed a game’s
round-robin, selection takes place and each player
is allowed to change its strategy. Following the
replicator dynamics [Hofbauer & Sigmund, 1998;
Gintis, 2000], the probability that an agent adopt
a different strategy in the next generation depends

on the difference between its payoff and the average
payoff of the system. Under these conditions (well-
mixed hypothesis or mean field approximation), the
fraction of cooperators will unavoidably decrease in
time towards zero. Therefore, it seems clear that in
order to answer the question about how cooperative
behavior can survive in animal and human social
systems one has to relax the hypothesis considered
above, such as the well-mixing assumption.

In the last decade, scientists have unveiled
the structure of many complex systems, and
have described them in terms of complex net-
works [Bornholdt & Schuster, 2003; Dorogovtsev &
Mendes, 2003; Newman, 2003; Boccaletti et al.,
2006]. These networks are the backbone of com-
plex systems and hence they are the substrates on
top of which a number of relevant dynamics (such
as disease spreading, information transmission or
human traits) occur. The structure of complex net-
works is far from being described with a fixed value
k accounting for the typical number of interactions
that an element shares with the rest of the system.
On the other hand, it has been measured that the
distribution of the number of contacts (or alterna-
tively the degree) of the elements follows a power-
law, P(k) ~ k™7, i.e. the networks are scale-free
(SF). Moreover, many measures of real complex net-
works have obtained an exponent 2 < v < 3 for the
power-law degree distribution, pointing out that the
variance (k?) of this statistical distribution diverges
in the infinite population limit. Taking into account
these results, it becomes clear that any mathemati-
cal model or numerical simulation aimed at describ-
ing the cooperative behavior in real social systems
has to incorporate the scale-free nature of the social
contact network.

In this paper we will study the cooperation in
random scale-free networks. First, in Sec. 2, we will
analyze the evolution and the structure of coopera-
tion in the prisoner’s dilemma game through numer-
ical simulations of the evolutionary dynamics. In
particular, we will study the average level of coop-
eration sustained by random SF networks and how
cooperators and defectors are arranged across the
network. We will compare our results with those
obtained by previous studies on other, scale-free or
not, network topologies. In the second part of the
paper, Sec. 3, we present a mean field approxima-
tion that divides players into classes according to
their number of contacts. The mean field approx-
imation is shown to be correct for particular sets
of initial conditions and hence provides a useful
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analytical tool for studying the cooperation in com-
plex networks (in particular, for those graphs with
a long-tailed degree distribution). Finally, in Sec. 4,
we round off the paper by summarizing the main
results of the work.

2. The Structure of Cooperation in
Random Scale-Free Networks

In recent years, a number of studies have focused
the prisoner’s dilemma on top of complex net-
works [Eguiluz et al., 2005; Lieberman et al., 2005;
Santos & Pacheco, 2005; Ohtsuki et al., 2006;
Santos & Pacheco, 2006; Santos et al., 2006;
Gémez-Gardenes et al., 2007; Poncela et al., 2007;
Szabé & Fath, 2007; Goémez-Gardefies et al.,
2008; Szolnoki et al., 2008; Vukov et al., 2008|.
These works have determined that SF networks
enhance cooperation when compared to homoge-
neous random networks such as Erdés—Rényi graphs
(described by a Poisson degree distribution, P(k) ~
e®) (k)k /k!). However, these works have mainly
focused on SF networks constructed via the cele-
brated Barabasi-Albert (BA) model [Barabési &
Albert, 1999]. The BA model considers that the
network is grown from an initial core of mg nodes,
incorporating a new node to the network every time
step. Every new node launches m links to the nodes
already present in the growing network following a
preferential attachment rule (i.e. the probability of
receiving a link from the new node is proportional
to the degree of the nodes).

The networks generated using the BA model
have a power-law degree distribution with v = 3
but, at the same time, they posses important fea-
tures that make them different from random SF
networks constructed by means of purely statistical
algorithms such as the Molloy-Reed configurational
model [Molloy & Reed, 1998]. These differences
are manifested in the so-called age-correlations
[Dorogovtsev & Mendes, 2003; Newman, 2003] that
have as a consequence the interconnection of highly-
connected elements or hubs. The links between hubs
have been shown to play a crucial role in the survival
of cooperation [Santos & Pacheco, 2005] since when
removed the cooperation level decreases notably
(although it remains larger than those observed in
regular and homogeneous graphs).

In fact, a careful inspection of the structure of
cooperation in BA SF networks [Gémez-Gardenes
et al., 2007] reveals that cooperators are arranged
in a very cohesive way. In particular, they are glued

together into a single cooperator cluster sustained
by the highly connected nodes that always play
as cooperators [Gémez-Gardeties et al., 2008]. Our
first goal in the study of random SF networks is
to check if the deletion of the hub-to-hub links
affects the structure of cooperation observed in BA
networks, explaining qualitatively the drop in the
cooperation level as a breakdown of the cohesive
arrangement of cooperators.

To study the structure of cooperation in ran-
dom SF networks we have performed a rewiring
of the SF networks obtained by means of the BA
model. Following the scheme shown in [Maslov &
Sneppen, 2002] the rewiring process destroys any
kind of correlations present in the original network
preserving the degree sequence of the graph, and
thus keeping the same degree distribution (P(k) ~
k~3) as in the original BA network. The networks
generated in this work have N = 4000 and (k) = 4.

Once the network is constructed, we per-
form the numerical simulation of the evolutionary
dynamics as dictated by the prisoner’s dilemma
payoff matrix with P =S5S=0, R=1,T=0b> 1,
so that we deal with only one control parameter:
the temptation to defect b. We start from an initial
configuration with equal number of C' and D play-
ers (¢ = d = N/2) that are randomly distributed
across the network nodes. At each generation of the
discrete evolutionary time ¢, each agent 7 plays once
with every agent in its neighborhood and accumu-
lates the obtained payoffs P;. Then, all the players
update synchronously their strategies by the follow-
ing rules. Each individual i chooses at random a
neighbor j and compares its payoff P; with P;. If
P; > Pj, player ¢ keeps the same strategy for the
next generation. On the other hand, if P; > F;, the
player 7 adopts the strategy of its neighbor j for the
next game round robin with probability [Santos &
Pacheco, 2005]:

;= B(P; — F). (1)

Here, (3 is the characteristic inverse time scale: the
larger (3 the faster evolution takes place. Addition-
ally, we consider 3 = (max{k;, k; }b)~! assuring that
Hiﬂj S 1.

Let us now explain the details of the numeri-
cal analysis. We let the system evolve until a sta-
tionary regime is reached. The stationary regime is
characterized by a stable average level of cooper-
ation (c), that is the fraction of C players in the
network, (¢) = ¢/N. To compute (c) we let the
dynamics evolve over a transient time 79 = 5 - 103,
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and we further evolve the system over time windows
of 7 = 10% generations. In each time window, we
compute the average value and the fluctuations of
¢(t). When the fluctuations are less than or equal
to 1/ V/N, we stop the simulation and consider the
average cooperation obtained in the last time win-
dow as the asymptotic average cooperation (c). In
order to make an extensive sampling of initial con-
ditions and network realizations we have performed
10 numerical simulations for each value of the
temptation b studied, and averaged accordingly the
values (c) found in the realizations. In Fig. 1(a) we
have plotted the evolution of the average level of
cooperation (c) as a function of b. Our results con-
firm the findings in [Santos & Pacheco, 2005]: the
removal of age-correlations makes SF networks less
robust to defection than BA networks. However, the
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Fig. 1. (a) Evolution of the average level of cooperation (c)
as a function of the temptation to defect b in random SF
graphs. The panel also shows the corresponding evolution for
the fraction of pure cooperators (PC), pure defectors (PD)
and fluctuating (F) players. (b) Evolution of the number
of cooperator clusters N.. and defector clusters Ny. as a
function of b.

figure shows that (c)(b) > 0 until larger values of
b as compared to the cooperation levels found for
homogeneous ER graphs [Gémez-Gardenes et al.,
2007].

To measure the structure of cooperation we fol-
low the approach introduced in [Gémez-Gardenes
et al., 2007]. Once the system has reached the
stationary regime, we let the system evolve again
for 7, = 10* additional time steps, and measure
the relevant magnitudes for the dynamical char-
acterization of the stationary state. In particular,
we label each player in one of the following three
categories: pure cooperators (PC), pure defectors
(PD) and fluctuating (F) players. Pure cooperator
(pure defector) strategists are those players that
adopt cooperation (defection) during all the 7,5 gen-
erations. Conversely, fluctuating players are those
agents that play both as defectors and cooperators
at the stationary regime, and hence change their
strategies during the time window of length 7. In
Fig. 1(a) we also plot the fraction of PC, PD, and F
players as a function of the temptation b. The evo-
lution of the three fractions follows the expected
behavior: PC decrease with b, whereas F players
first increase and occupy macroscopically the net-
work. Finally, F agents are progressively replaced by
PD until all the network is fully occupied by pure
defectors. Remarkably, the number of PC is sur-
prisingly lower than both BA and homogeneous ER
networks. Instead, in random SF graphs the average
level of cooperation is sustained by those F players
that dominate the population of the network in the
range 1.2 < b < 1.9.

Once we have identified the PC, PD and F
players we define the cooperator and defector clus-
ters. A cooperator (defector) cluster is a connected
subgraph composed of nodes that are pure cooper-
ators (defectors) and the links between them. In
Fig. 1(b) we have plotted the number of coop-
erators and defector clusters as a function of b.
The first difference with respect to BA networks
is that here we find realizations with more than
one cooperator cluster. This difference explains the
drop in the cooperation level observed in [Santos &
Pacheco, 2005]: the more fragmented the coopera-
tors are arranged the less sources of benefits they
find in their surroundings and the larger is the prob-
ability to be invaded by the instantaneous defec-
tors that are in contact with them. Regarding the
defector clusters we observe the same picture as in
BA networks: PD are arranged in several clusters
when they start to invade the network (b ~ 2).
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The number of defector clusters decrease as they
start to grow in size and finally collapse into a sin-
gle one only when all the network is totally invaded
by pure defectors. We have also checked the proba-
bility that a node of degree k is a cooperator in the
stationary regime. Our numerical simulations show
that, in agreement with previous numerical observa-
tions in BA networks [Gomez-Gardenes et al., 2008],
high degree nodes are more likely to act as cooper-
ators than intermediate or low degree individuals.

Summing up the previous results, in random
SF networks, the fragmentation of the cooperator
clusters together with the extremely low fraction of
pure cooperators and the prevalence of fluctuating
individuals lead to an organization of cooperation
that is radically different to that observed in BA SF
networks.

3. The Degree-Based Mean Field
Approximation

The random SF graphs analyzed above are free of
any kind of correlation between the properties (age,
degree, etc...) of two adjacent nodes. Therefore,
it is amenable to study analytically the evolu-
tion of the cooperation by considering a similar
approach to that used for diffusion processes in com-
plex networks [Pastor-Satorras & Vespignani, 2001a,
2001b; Moreno et al., 2002] with arbitrary degree
distributions and no correlations. To incorporate the
heterogeneity in the number of social contacts of
individuals, we make a further compartmentaliza-
tion of the strategists in degree-classes. In this sense,
we label ¢ and dj, as the fraction of cooperators and
defectors with degree k so that the total number of
cooperators and defectors are, respectively

c=NY_ P(k)e, (2)
k

d=N>_ P(k)dy. (3)
k

Obviously the relation ¢ + di = 1 holds and there-
fore we write the evolution of the fraction of coop-
erators with degree k as

e = (1 — )P — ¢ II5 P, (4)

where HkDC (HkCD ) is the probability that a coop-
erator (defector) of degree k change its strategy to
defection (cooperation). Assuming that the network
has no degree-degree correlations, and following the
replicator-like update rule (1), we can write the

probabilities HDC and HCD as

npe = - R sl - ppe 6
e
ng? = S P sorpp - pEi1 - (6)

k)

where the function ©[x] is defined as O[z] = zif z >
0 and O[z] = 0 otherwise. Besides, P{ and PP are
the payoffs obtained by a cooperator and a defector
of degree k, respectively, and can be written as

F=kY klflg"/) cp = ki, (7)
m

Py =b-kl, (8)

where [. is the probability that a node has a coop-
erator neighbor. Now we can insert the above two
expressions (7) and (8) in Egs. (6) and (5) and
finally write the evolution equation (4) as

=) Y PP gk by

k'>bk < >
k’ k’
—cr Y =Bk — k) (1 — )
k'>bk
bk k’
—r Y (0K —k)(1 = cw), (9)
k'>k/b

where we have separated the contributions to the
transition C — D that come from neighbors with
k' > bk and k' < bk, so that it is clear that the num-
ber of degree classes that participate in the transi-
tion C — D is larger than those that influence the
change D — C.

The main assumption behind the above mean
field approach is that the average level of coopera-
tion inside a degree-class, ¢, is a proper magnitude
for describing the state of nodes with this degree. In
particular, this assumption is strictly correct when
¢y is either 1 or 0. This motivates us to study the
solution of Eq. (9) using a particular set of initial
conditions: the targeted cooperation.

We define targeted cooperation as a set of ini-
tial conditions for the system (9) for which ¢ (0) =1
if £ > k* and ¢(0) = 0 if £ < k*. We have care-
fully explored the solutions of Eq. (9) when P(k)
is a power-law degree distribution. To this end, we
have studied power-laws with several values of v and
used different values for the degree threshold £*.
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Fig. 2. The two panels show the time evolution of the frac-

tion of cooperators (c)(t) obtained solving Eq. (9) when tar-
geted cooperation is used as initial conditions and P (k) being
a power-law with v = 3. The different curves correspond to
several values of b (as shown in the bottom of the figure).
The targeted cooperation used correspond to (a) k* = 2 and
(b) k* = 3.

The numerical solution of Eq. (9) reveals that the
cooperation level remains for b > 1, reaching a sta-
tionary value that depends on both the value of b
and that of the threshold k£*. In Fig. 2, we show the
time evolution of the average level of cooperation
for several values of b and k* = 2 and k* = 3. The
degree distribution in the figure is a power-law with
~ = 3. The solutions show that the larger k* and/or
b are, the lower the cooperation level is.

It is interesting to study in detail the effect of
the threshold £* over the asymptotic level of coop-
eration. In particular, we can obtain the minimum
amount of degree classes that we have to fill ini-
tially with cooperators so that cooperation is able
to survive asymptotically in the network. We have
explored different sets of initial conditions corre-
sponding to different values of k£*. Starting from a
low value of k* we have solved Eq. (9) and com-
puted the final level of cooperation (c). If (¢) > 0
we increase the value of £* and solve again the sys-
tem (9). This process is iterated until we reach a
value k} for which cooperation vanishes. The com-
puted value k thus represents the minimal amount
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b
Fig. 3. Phase diagram kg (b). The three curves correspond

to different power-law distributions (namely, v = 4, 3 and 2).
Each curve kj(b) represents the border between two diffe-
rent asymptotic regimes for the evolution of Eq. (9) with
targeted cooperation: The area below the curves correspond
to the points (b, k™) where targeted cooperation yield nonzero
asymptotic level of cooperation. Conversely, the area above
the curves correspond to the targeted initial conditions for
which the evolution of Eq. (9) yields (c¢) — 0.

of cooperator degree classes needed at time 0 to
sustain asymptotically a nonzero level of coopera-
tion. In Fig. 3, we have plotted the functions kX (b)
for three power-law degree distributions (y = 2, 3,
4). Obviously, we observe that as the temptation to
defect increases it is necessary to fill more degree
classes to assure a nonzero level of cooperation.
More interestingly, we show that the heterogeneity
of the network increases the value of k7. This result
is related to the fact that filling a given amount of
degree classes is more efficient (more nodes are ini-
tially set as cooperators) when the network is more
heterogeneous.

Computing the phase diagram £} (b) is a diffi-
cult task if we only rely on the results of the numeri-
cal simulations of the evolutionary dynamics on top
of the graphs. Therefore, the mean field approach
represents, in this context, a useful tool for substi-
tuting computationally expensive numerical simula-
tions. However, how accurate are the results of the
solutions of Eq. (9) when compared to numerical
simulations? To check the reliability of the degree-
based mean field approach in the context of targeted
cooperation we have computed the diagram (c)(b)
for random SF networks with v = 3 using two differ-
ent sets of initial conditions corresponding to £* = 3
and 4. In Fig. 4, we show the results of the numer-
ical simulations compared to the results obtained
by solving Eq. (9). Obviously, the agreement is not
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Fig. 4. Evolution of the asymptotic level of cooperation (c)
obtained when (i) solving the mean field (MF) Eq. (9) and (ii)
computed through numerical simulations (NS) of the evolu-
tionary dynamics on top of a random SF network. The degree
distribution used is a power-law with v = 3. In both cases,
we have set targeted cooperation as initial conditions for the
evolutionary dynamics. We have used k* = 3 and 4.

complete but the evolution of the cooperation as a
function of b follows the same qualitative behav-
ior and the cooperation tends to zero ({c) 2 0)
around the same values of b. The values of b for
which (¢) = 0 in each of the curves of the figures are
obviously related to the values k. Our results show
that the curves (c)(b) obtained from numerical sim-
ulations reach larger values of b with (¢) > 0. On the
other hand, the numerical simulations yield very low
values of (c) for those values of b for which coopera-
tion asymptotically vanishes solving Eq. (9). There-
fore, the mean field approach seems to be of help to
study the behavior of £} (b) and the asymptotic level
of cooperation of the system when targeted cooper-
ation is initially placed in the system.

Regarding general (i.e. nontargeted cooperation
type of) initial conditions for the degree-based mean
field equations (9), some comments are in order.
For both, power-law and Poisson degree distribu-
tions P(k), random uniformly distributed values for
c(0), as well as fixed value ¢;(0) = 0.5 (mimicking
the initial conditions in the numerical simulations
of previous section), led to asymptotic zero level of
cooperation as soon as b > 1. This suggests that,
generically speaking, mean field approaches (even
in generalized forms, as Eq. (9)) to the evolutionary
dynamics of prisoner’s dilemma games on graphs
are likely to fail to account for the numerically
observed survival of cooperation. This would be in
agreement with results reported elsewhere [Floria

et al., 2009] on a particular type of artificial net-
works that allow a rigorous analysis of the issue. To
put it in plain terms, the lattice reciprocity mech-
anisms that enhance the evolutionary survival of
cooperation in network settings seem to be out of
reach from the (homogeneity) mean field assump-
tions, in the sense that they are associated in an
essential way to fluctuations of averaged quantities,
like ¢;, which are the basic descriptors in mean field
approaches.

4. Conclusions

Scale-free networks have been recently shown as
the graphs that better promote cooperation. In this
article we have shown that the power-law degree
distribution cannot be considered as the only root
for the promotion of cooperation. At variance with
the Barabédsi—Albert networks, the SF graphs con-
sidered in this work are free of any kind of node-
node correlation. The first conclusion of our study
is that cooperation decays when no correlations are
present in the network. Moreover, we have shown
that the organization of cooperation is dramatically
different from that of the BA network, showing that
cooperators can arrange in more than one cluster
increasing the probability of being invaded by defec-
tors. In other words, the fixation of cooperation is
much lower than in SF networks with correlations,
thus completing the picture provided by other stud-
ies where correlations were added into SF networks
[Assenza et al., 2008; Push et al., 2008] enhanc-
ing the promotion of cooperation of BA networks.
Therefore, on one hand, our study in random SF
networks can be considered as the null model for
the study of the cooperation in other types of SF
graphs. On the other hand, our results highlight the
importance of taking into account other structural
properties beyond the degree distribution of the net-
work [Da Fontura Costa et al., 2007] in order to cap-
ture the mechanisms that help to fixate cooperation
in real complex networks.

The second part of the article presents a degree-
based mean field approach to study analitycally
networks with arbitrary degree distribution and
no degree-degree correlations (such as random
SF networks). The approach relies in a degree
compartmentalization of cooperators and defectors
strategists. We have shown that, contrary to diffu-
sion dynamics where a similar approach has been
applied, the degree-based mean field does not work
correctly when general initial conditions are applied
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since no cooperation is observed when the tempta-
tion to defect is larger than the reward to coop-
eration. On the other hand, when a particular set
of initial conditions is used (consisting of placing
all the cooperators in the higher degree classes of
the network) the solution of the mean field yields
a nonzero level of cooperation for a number of tar-
geted initial configurations. The results obtained in
this latter context qualitatively agree with those
obtained when extensive numerical simulations on
top of random SF graphs are performed.

As a conclusion, the results presented in this
article complete the studies about the prisoner’s
dilemma on top of SF networks showing that node-
node correlations play a key role for sustaining a
high level of cooperation. Besides, the mean field
approach, although not working for all the initial
configurations placed in the networks, adds an ana-
lytical insight to the field of evolutionary games on
graphs, being especially useful when targeted coop-
eration is studied. The mean field approach pre-
sented here is open to the incorporation of other
ingredients such as degree-degree correlations that
may help to reproduce the levels of cooperation
observed in the numerical simulations.
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