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Abstract. Recently, the study of evolutionary games on networks has attracted
great interest, focused mainly on the problem of the emergence of cooperation.
A well studied framework for this problem is the Prisoner’s Dilemma game
on fixed, evolving or growing networks. In this paper we present a complete
picture of the behavior of another important social dilemma, the Stag Hunt game,
under an evolutionary preferential attachment model, in which the network grows
according to the dynamical states of the elements of the system. We observe the
emergence of a scale-free and hierarchical organization of the strategies according
to connectivity classes as a by-product of the diffusion of cooperation in the
network. Depending on the parametrization of the game dynamics, we find a
smooth transition from cooperation to defection and a polymorphic state with
simultaneous presence of cooperator and defector hubs, which is very unusual in
coordination games.
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1. Introduction

The problem of the emergence of cooperation in natural and social systems is related to
important biological and socio-economical issues, and it has been the subject of intense
research in recent years [1]–[3]. The mathematical approach to this problem, usually
tackled under the general framework of evolutionary games on graphs, has attracted a
lot of interest in the physics community recently [4]–[6]. It has been recognized that the
well-mixed (mean-field) dynamics, in which every individual interacts with every other
one, does not compare well in general with the results obtained by introducing some
form of structure in the population. Here, structure is to be understood as a (possibly
spatial, possibly complex) network that dictates who interacts with whom (typically,
every individual with their nearest neighbors). On the other hand, interaction between
individuals takes place through a game [7] that in general represents a social dilemma [8].
Social dilemmas are situations in which individual rationality leads to a poor result from
the global viewpoint, and are thus particularly well suited to representing the problem
of the emergence of altruism, given by the choice to cooperate (C), against short-term
benefits of egoism achieved by defecting (D). Pioneering results on social dilemmas on
structured populations have been obtained for both lattices and regular graphs (see,
e.g., [9]–[15]) as well as for scale-free (SF) [16] networks (see, e.g., [17]–[19]) (see also [4, 5]
for recent, comprehensive reviews). The results of all those studies were inconclusive in
so far as it was found that the emergence of cooperation depended on the details of the
network, the dynamics or update rule for the individuals and the specific game under
consideration.

Among the different social dilemmas that can be considered, the great majority of the
above mentioned works focus on the Prisoner’s Dilemma (PD), in which the emergence
and the stability of cooperation are hampered by its most stringent conditions: to defect is
a dominant strategy as it always yields larger payoff irrespective of what the other player
does. Thus, cooperation is risky (it yields worse payoffs) and there would be temptation to
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defect even if it were not [20]. However, there are many other types of dilemmas, prominent
among which is the Stag Hunt game [21]. In this case, players want to coordinate, i.e., the
best option is to do always as the opponent does; conflict arises because one of the two
possibilities is more beneficial but more risky (when chosen by one player alone, it has a
poorer payoff associated than coordinating in the other option). Correspondingly, in this
game both mutual cooperation and mutual defection are evolutionary stable strategies [7]
and thus global attractors of the game dynamics. This fact gives rise to an interesting
bistable condition, so, depending on the initial frequencies of strategies, the system will
end up in an all-C or in an all-D state. We note that from the dynamical viewpoint
this is a much richer problem than the PD, where there is only one global attractor,
namely all-D. This is more so when the problem is posed on a network, because then local
initial conditions govern local convergence to one or the other attractor, leading to highly
non-trivial dynamics [15] which is far from being understood.

From an applied perspective, and in spite of having been the subject of only a
few studies, the Stag Hunt game captures the conflict between individual security and
aggregate wellness, which naturally arises in many social patterns, and represents many
situations better than the PD: indeed, this is the case when taking into account the effect
of group selection, in which the social interactions work towards maximizing the group
success [22], or when considering iterated games, in which the game is repeated and the
players keep in mind the outcome of previous and future rounds [1]. The Stag Hunt
game has been studied on networks to a much lesser extent than the Prisoner’s Dilemma,
particularly relevant examples being [15, 21], [23]–[27], the main conclusion being that,
generally speaking, homogeneous degree networks (lattices or regular random graphs)
promote the coordination in the preferred choice whereas heterogeneous graphs (e.g., SF
ones) tend to reduce it (often slightly), albeit this depends on the update rule as is the
case with the Prisoner’s Dilemma. Finally, it is interesting to mention that several papers
have addressed this question in an experimental framework, restricted of course to very
small networks (less than ten individuals, see e.g. [28]–[30]). While these experiments
shed some light on the micromotives governing individual behavior, it is clear that in
order to understand larger (social) systems one needs to resort to theoretical studies like
the present one.

In this paper, we address the issue of the emergence of cooperation in the Stag Hunt
game on dynamic networks. The works quoted above have been performed on static
networks, which are either endogenously or exogenously generated, but do not change
in time. However, when networks coevolve with the game being played, high rates of
cooperation have been reported, even for the Prisoner’s Dilemma [31]–[39] (see [6] for a
very recent review; see also [40, 41] for more economically oriented works). Our particular
study is devoted to the case in which the network is not initially given, but rather it
grows by successive addition of new individuals with new links. We note that this issue
is relevant in the wider context of complex adaptive systems, as the debate ‘form follows
function’ which arises in many situations of interest; what we are addressing here is indeed
whether the mechanism of network growth can indeed give rise to structures that promote
cooperation or have any other special property. As far as we know, the only attempt to
address these issues in the context of evolutionary games on graphs is the evolutionary
preferential attachment mechanism [42]–[44], which does not assume any a priori network:
instead, new nodes are added to the network and link formation is ruled by the dynamical
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states of its components, providing a feedback mechanism between evolutionary dynamics
and topology that shapes the structure. The fitness of a node is neither determined by
the instantaneous topology of the network nor imposed as an external constraint [45], but
it is the result of the dynamical evolution of the system, being proportional to the payoffs
obtained in the game. Nodes of the network are thus regarded as individuals involved in
a social dilemma, and newcomers are more probably linked to nodes with high fitness,
according to the preferential attachment rule.

The papers [42]–[44] considered the Prisoner’s Dilemma as the game giving rise to the
network, finding that the resulting structures supported higher levels of cooperation than
those reported for other networks. The aim of this paper is to give a complete picture of the
behavior of the Stag Hunt game dynamics under the evolutionary preferential attachment
model, also discussing what the role of the parameters involved is, the importance of
the choice of the payoff matrix as well as the structure of the resulting networks. To
this end, the paper is structured as follows. Section 2 introduces the model, including
the evolutionary preferential attachment algorithm. Section 3 presents our main results,
regarding the cooperation levels achieved and the structure of the network, as a function of
the parameters of the attachment algorithm. Section 4 discusses those results and proposes
explanations for them. Sections 5 and 6 are devoted to checking what the influence of
the remaining parameters of the model is, including the game payoffs. Finally, section 7
summarizes our main conclusions and presents a few open questions.

2. The model

We begin by defining the game we are going to consider. Symmetrical 2 × 2 games are
often parametrized as follows: both players receive R = 1 under mutual cooperation and
P = 0 under mutual defection, while a cooperator receives S ∈ [−1, 1] when confronted
with a defector, who in turn receives T ∈ [0, 2]. In particular, the Stag Hunt game, the
main object of our work, is characterized by the constraint 1 > T > 0 > S. In order to
simplify the problem, instead of using this two-parameter setup, we restrict ourselves to
the following choice: taking the parameter r = T = −S ∈ [0, 1], we have

C D
C
D

(
1 −r
r 0

)
.

(1)

Thus we expect cooperation from the players for r � 0, while defection will be more
probable for r � 1. The reason for this choice is that in the case of a well-mixed population
and in many networks of interest, the whole parameter space for the Stag Hunt game
divides into two regions, one with full cooperation and the other with full defection, with
the boundary perpendicular to the line we have considered in the ST -plane (see, e.g., [5]).

We now introduce the dynamics. Following the previously discussed evolutionary
preferential attachment mechanism [42, 44], the network starts at time t = 0 with an
initial core of m0 fully connected nodes. At equally spaced time intervals τD every node
i plays with all his ki(t) neighbors, and receives a payoff fi(t) according to matrix (1).
At the end of the round each node i can imitate the strategy sj of a random chosen j

doi:10.1088/1742-5468/2011/05/P05008 4

http://dx.doi.org/10.1088/1742-5468/2011/05/P05008


J.S
tat.M

ech.
(2011)

P
05008

Coordination and growth: the Stag Hunt game on evolutionary networks

neighbor with a probability given by the replicator rule, in the form

P{st
j → st+1

i } =
fj(t) − fi(t)

(1 + r) max[ki, kj]
(2)

valid only if fj(t) ≥ fi(t) (the probability to switch strategy is 0 in the opposite case).
Then, at equally spaced time intervals τT, a new element (cooperator or defector with
equal probability) is added to the network, and the probability that a pre-existing node
i receives one of the m links of the new one is linear in its payoff fi, controlled by the
selection parameter ε ∈ [0, 1] as

Πi(t) =
1 − ε + εfi(t)∑N(t)

j=1 (1 − ε + εfj(t))
(3)

where N(t) is the number of nodes of the network at time t. We prevent the possibility
that a single element of the network can receive more than one link from an incoming
node, and in the case of fi(t) < 0 for some i, we rescale all the payoffs by summing the
minimum, in order to ensure Πi ≥ 0 ∀i, without changing the relative distance among
the payoffs of each node in the system. Thus, within the framework of the preferential
attachment mechanism, in the weak selection limit ε → 0 the growth is independent of
the game dynamics, while in the strong selection limit ε → 1 high performing players
with large payoff fi are preferentially chosen and attract newcomers. The two associated
time scales, τT and τD, control the ratio between the network’s evolution and the game
dynamics. If τD/τT > 1 the network grows faster than the evolutionary dynamics, whereas
in the other case the nodes play many times before adding a new element. Note that in
the attachment procedure given by equation (3) we consider only the payoffs obtained in
the last round played.

A word is in order to comment about our choice of the dynamics. It is well known by
now that the outcome of evolutionary game theory depends strongly on the dynamics, as
stated above and shown in [5]. Therefore, it is important to clarify that the dynamics we
are using is directly inspired in the imitation phenomena observed in most social networks.
Indeed, from the experimental viewpoint, there are several reports that indicate that
imitation is commonly used by humans [46, 47], and that it can be justified in psychological
terms by looking at how confirmation and disconfirmation of beliefs are carried out [48].
Imitation has also been proposed as a relevant force to drive the evolution toward economic
equilibrium [49]. Finally, it has been recently shown in a computer tournament that
imitation is the tool of choice for learning rather than asocial information, even if the
latter is cost-free [50]. We thus believe that, while admittedly our results will only be
valid for the dynamics we are studying and related ones, their relevance in social terms
cannot be overstated.

We monitor the properties of the network at various steps of the evolution, such as
N = 100, 400, 1000, and at the end of the network’s growth, N = 2000 nodes. Then we
let the agents play the game without adding new elements, until the network reaches an
asymptotic equilibrium; we define that such an equilibrium has been reached if for ten
consecutive time steps there are not changes of strategy in any node, and in any case we
stop the game after playing a maximum number of 105 rounds.
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Figure 1. Degree distributions for several ε. A transition from homogeneous to
SF networks is evident. The parameters are: temptation parameter, r = 0.3;
initial core, m0 = 4 nodes, 50% cooperators and 50% defectors; links per new
node, m = 2; and τD = 10τT, with τT = 1, i.e., ten nodes are added for each
game round we play. Results are the average of at least 103 realizations.

3. Results

Let us begin by looking at the phenomenology of the model in the ε–r space while fixing
the other parameters (whose influence will be considered in sections 5 and 6 below). We
thus take an initial core of m0 = 4 nodes, made up of 50% cooperators and 50% defectors,
each new element attaches to m = 2 different pre-existing nodes, and we add a number
of ten nodes for each game round we play (i.e., τD = 10τT, with τT = 1). Each result we
report is averaged over at least 103 realizations.

The evolutionary preferential attachment mechanism combined with the Stag Hunt
game dynamics gives rise to a highly non-trivial interaction between the emergence of
cooperation and the topology of the underlying network. As shown in figures 1 and 2, the
degree heterogeneity of the resulting networks depends not only on the selection parameter
ε, which is expected and consistent with previous findings [42], but also on the temptation
parameter r, and thus on the final cooperation level. Figure 1 shows that in the low r
region, two families of networks are obtained depending on the value of ε. In the limit
ε → 0 we obtain homogeneous networks, characterized by a degree distribution with
a tail that decays exponentially fast as the degree k increases. In the strong selection
limit ε → 1, on the contrary, scale-free networks with γ � 3 arise, when the temptation
parameter r is sufficiently small to allow a high level of cooperation. The emergence of
SF networks leads also to a hierarchical organization of cooperation in the local structure,
the payoff received by the nodes and the strategies chosen being related to their degree,
as we will show.

In order to present a global picture of the degree of heterogeneity of the resulting
networks in the ε–r space, we plot in figure 2 the variance 〈k2〉 of the degree distribution
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Figure 2. The variance 〈k2〉 of the degree distributions, from (4), represented
with a color code in the ε–r space as indicated in the plot. The parameters are
as in figure 1.

P (k), computed as

〈k2〉 =
∑

k∈P (k)

(k − k)2pk. (4)

This magnitude provides us with a heuristic picture of the transition from homogeneous
to SF networks, because the variance is expected to be higher for heterogeneous networks
than for homogeneous ones, although it has to be understood as an indication because
it is affected by strong finite-size effects. We see that the plot in figure 2 confirms the
ideas suggested by figure 1, in the sense that networks with high variance (probably SF
networks) are restricted to the high ε, low r region.

In order to provide more information about the network structure, it is convenient
to look at other quantities, such as the degree correlation Knn(k), defined as the mean
degree K of the neighbors of a node of degree k. This quantity is related to the degree of
heterogeneity of the P (k) of the resulting topologies, and it presents two distinct behaviors
in the ε–r space. Indeed, in figure 3 we show that, when the network is homogeneous,
the degree correlation has an assortative character to a certain extent, which means that
lowly connected nodes are linked to each other, and the same takes place for highly
connected elements. On the contrary, when SF networks arise, for ε → 1 and small
r, Knn(k) presents more of a disassortative behavior, with cooperator hubs more often
linked to lowly connected nodes and vice versa. Another relevant magnitude to monitor
is the clustering coefficient, i.e., the number of triangles actually realized on the network
over the possible ones. This quantity (figure not shown) remains far away from typical
values of real networks, and its behavior in the ε–r space is similar to that of the degree
of heterogeneity. The maximum value, 〈CC〉max = 3%, is reached in the region of SF
networks, for ε → 1 and r → 0, while in the rest of the plot it falls down to a constant
value close to that of ER random graphs. This is clearly related to the fact that, when
forming SF networks, indeed, new elements attach with high probability to the nodes of
the initial core (which will be the hubs of the network), which are linked to each other,
closing the triangle and increasing the clustering coefficient.
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Figure 3. Degree–degree correlations obtained for ε = 0.99 and several values of
r. A change from some disassortative to some assortative character increasing r
can be observed. The parameters are as in figure 1.

Figure 4. Average cooperation level for ε = 0.99 as a function of r at various
steps of the network evolution. The shape of the transition becomes abrupt when
the network reaches the equilibrium. The parameters are as in figure 1.

Having discussed the structure of the generated networks, we now turn to the
cooperative behavior of the agents. We find that the final average cooperation level
reached does not depend on ε, which means that cooperation is not specially favored within
the framework of evolutionary preferential attachment, unlike the case of the Prisoner’s
Dilemma [42]. In figure 4 we focus on the strong selection limit ε = 0.99, and we show that
the shape of the transition from cooperation to defection changes during various steps of
network’s evolution, producing an overall enhancement of the average cooperation level.
While at the beginning the transition is smooth, as the network grows it becomes more
abrupt, until, at the end of the game, the range of r polarizes into two distinct regions,
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Figure 5. Probability that a node with connectivity k plays as a defector for
different values of r and ε = 0.99 at the end of the growth of the network. Hubs
or highly connected nodes are always occupied by cooperators. The parameters
are as in figure 1.

one with an all-C configuration, for small r, and the other with all-D, for large r. If we
check the relaxation time needed to get the asymptotic equilibrium, measured in number
of rounds, we discover a peak just on the critical point of the transition from cooperation
to defection, due to the unstable character of the resulting network, which takes a long
time to polarize into an all-C or all-D configuration. We believe that the fact that in
our model cooperation is not promoted with respect to the case of static networks is not
surprising: indeed, previous findings [15, 17] show that the enhancement of cooperation
due to a heterogeneous underlying structure is quite small for Stag Hunt games (unlike
other social dilemmas), and in all cases it is restricted to the region for T → 1 and S → 0,
while we are considering the representation S = −T . It is interesting to note, however,
that the transition from cooperation to defection takes place at a value of r slightly larger
than that found for standard SF networks. On the other hand, cooperation in Stag Hunt
games is increased by the presence of clustering, but as in our case it remains quite low,
it does not lead to a noticeable improvement of the cooperation level.

In spite of the fact that cooperation as a whole is not much enhanced, the resulting
networks show a hierarchical organization of cooperation in the local structure of the
network, which is a key feature in order to understand how the evolutionary preferential
attachment mechanism works. In figure 5 we show that when there is simultaneous
presence of cooperators and defectors in the network, for r close to the critical point,
the hubs, or highly connected nodes, are always occupied by cooperators, receiving a very
large payoff, while defectors are localized in the intermediate and low degree classes, with
small payoffs. The same hierarchical organization of cooperation, with the hubs always
occupied by cooperators, has been also found for the PD on static SF networks [18]. On
the other hand, using the evolutionary preferential attachment mechanism based on the
PD game, this statement is no longer true and hubs may be occupied by defectors too [44].
Therefore, it is clear that the organization of the agents on the network depends on the
game and is not only a consequence of the attachment rule for the links.
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4. Discussion

Having presented our main simulation results, we now can understand how the
evolutionary preferential attachment model acts coupled with the game dynamics, and
why SF networks arise only in the presence of cooperation for ε → 1. Imagine the
evolution of a cooperator i of degree k in the initial phase of the network growth. If the
node i reaches a ‘critical’ degree kc, its payoff could be high enough (in particular if i is
connected to a majority of cooperators) to attract new nodes. If they are cooperators,
they increase is payoff, while if they are defectors, they cannot change the strategy of
node i and in the end they will imitate is strategy, reinforcing even more the group, until
the cooperator (i) becomes a hub. Conversely, if k is less than kc, i cannot defend itself
from the incoming defectors’ attack, which invades first the neighborhood of i and sooner
or later itself too. The group becomes composed of only defectors, all the elements receive
a zero payoff and they are not likely to attract new nodes, and hence the group eventually
stops its growth at an intermediate degree.

If r is small, there are many cooperators in the first phase of the network’s evolution,
and some of them can easily reach the critical degree kc, becoming hubs and giving rise
to an SF network. On the contrary, large r prevents this mechanism and homogeneous
networks are produced. Cooperators are not able to achieve kc, because they become
defectors long before, and the presence of only defectors implements a generalized zero
payoff, preventing the preferential attachment mechanism from working, and new nodes
simply attach randomly.

In the case ε → 0, the preferential attachment is switched off, so homogeneous
networks with zero cooperation level are produced. The game dynamics prevails,
preventing the emergence of cooperation even in the first phase of the evolution. On
the other hand, for ε → 1 and for hostile dynamics conditions for cooperation (r → 1),
when just a few nodes are present at the beginning of the growth, the incoming cooperators
attach to the highest connected nodes and preserve a small payoff, thanks to the
preferential attachment. In this phase (N � 100) the network is ‘unstable’, because
small clusters of cooperators can survive together with a majority of defectors. Then at a
certain instant of the evolution, the game dynamics prevails and the existing cooperators
are invaded by defectors, while the incoming nodes are not enough compared to the
network’s size to preserve a considerable payoff. Thus new elements begin to attach
randomly and the network loses the possibility of becoming SF.

5. Influence of the parameters

In section 4, we have presented our general understanding of the model behavior. It is
now time to focus on how the variation of some of its parameters, such as the initial
conditions or the time scales, affects the picture obtained with the standard parameters
discussed above. This is an important issue in so far as, in the case of static networks, as
well as for the evolutionary approach on well-mixed populations, the Stag Hunt game has
been found to be very sensitive to the initial conditions, more than other social dilemmas,
basically due to its bistable character.

Initial conditions. In our model the initial conditions are given by the size of the initial
core m0 and its composition, but they strongly influence the average level of cooperation
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Figure 6. Average cooperation level as a function of r for several values of the
time scale τD/τT. The enhancement of cooperation for high time scales is evident.
The other parameters are the same as in figure 1.

reached by the system, thus being consistent with previous results. Besides, in the model
we present here, the topological structure of the resulting networks is greatly affected by
these initial conditions as well. Indeed, increasing the size of the core or its composition in
cooperators leads to a remarkable enhancement of cooperation. For instance, if we start
with an initial core of m0 = 10 and all cooperator nodes, we get a final state of all-C even
for r � 1. Although the initial core is small compared to the final size of the network,
the evolutionary mechanism of the preferential attachment emphasizes the role of the first
elements, which determine the entire evolution of the network. Conversely, letting ε → 0,
the effect of the initial core is considerably smaller.

Time scales. The time scale τD/τT plays a fundamental role in determining the action
of the evolutionary preferential attachment mechanism on the network’s structure and
on the emergence of cooperation. We have verified that, by modifying the ratio
τD/τT = 0.1, 1, 2, 5, 10, 20, we change the interaction between the game dynamics and
the evolutionary topology. If τD/τT > 1, then the evolution of the network is faster than
the selection pressure given by the game dynamics, while the choice τD/τT < 1 is not very
realistic, because selection, understood as strategies evolution, should be slower than the
network growth. In figure 6 we show that a small time scale τD/τT � 1 gives rise to a
reasonably low average level of cooperation, but if we increase that time ratio, the level
of cooperation also increases for all values of r. Of course, there is a value τD/τT � 10, 20,
for which the cooperation in the system cannot be improved any further. The preferential
attachment mechanism, clearly, makes sense only if a relatively large number of nodes are
attached at each round, i.e., τD/τT 	 1. In this way, at each game round the stochastic
fluctuations due to the incoming elements make it possible that a node, with a payoff
slightly higher than the others, attracts a good number of new elements. Thus it can
increase its payoff, attracting more and more nodes in a cascade process. On the other
hand, if we attach only a few nodes each round or we play many times before adding a
node, τT/τD � 1, this possibility does not exist: the game dynamics, given by the payoff
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matrix, is the only element which determines the network’s evolution. The system evolves
quickly either to an all-C or to an all-D configuration, depending on whether r is small
enough to make the cooperators’ payoffs higher than the defectors’ ones, or vice versa.

We have looked for confirmation of this behavior by considering the transition from
cooperation to defection during the network growth at various steps. Unlike the case
τD/τT = 10, 20, if τD/τT � 1 the shape of this curve does not change during the evolution,
and the cooperation level reached at the starting point is the same as that at the end of
the game, for any r. Cooperation and defection cannot coexist, and the strategies of the
elements of the network do not evolve, remaining frozen at the initial state: either all-C
or all-D. In this case, the composition of the initial core is crucial for the final cooperation
level reached, because the payoffs of the core determine all the evolution. Correspondingly,
the transition point from cooperation to defection at small time scales, indeed, is close to
the value of r, which ensures the same probability for either a cooperator or a defector of
the core to be chosen.

Mean degree and final size. In contrast to the two other aspects we have mentioned
above, the mean degree 〈k〉 and the final size N of the resulting network affect only
slightly the outcome of the model. If we increase the mean degree 〈k〉 = 2m, determined
by the number m of nodes which every new element attaches to, we make the network
more interconnected, in the sense that each node interacts with many others, and
as a consequence the local structure is less relevant and we go toward a mean-field
approximation. Our results indicate that increasing m = 2, 3, 4, 5 leads to a slight but
progressive decrease of the average level of cooperation, while on increasing the final size
of the network N = 1000, 2000, 5000, 10 000 the transition from cooperation to defection
becomes more abrupt. In view of this, it is reasonable to put forward the hypothesis
that for large 〈k〉 and in the limit N → ∞, the shape of the transition approaches
asymptotically that of a complete graph (well-mixed population).

6. Role of the game dynamics

Aside from the parameters considered in section 5, there is another important question to
address, namely how the parametrization of the game dynamics affects model behavior.
This is what we would like to discuss now in a section of its own, because of its dramatic
effect on the results. In principle, one would expect that choosing different forms of the
payoff matrix, while maintaining the Stag Hunt game constraints, would not affect the
average level of cooperation reached and the main topological properties of the resulting
networks with respect to those found with the choice (1). In order to verify this hypothesis,
we have carried out simulations of our model with a different parametrization of the payoff
matrix, without changing the relative difference between the payoffs of the players and
fixing the other parameters to ε = 0.99, τD/τT = 10, m0 = 4, m = 2 and N = 2000 as
before. As it turns out, the most interesting results arise when each term of the payoff
matrix is positive, and therefore we present here a representative situation, given by(

2 1 − r
1 + r 1

)
. (5)

With the above choice, the emergence of cooperation and the topological structure
of the resulting networks are completely different from the case of the form (1). This is

doi:10.1088/1742-5468/2011/05/P05008 12

http://dx.doi.org/10.1088/1742-5468/2011/05/P05008


J.S
tat.M

ech.
(2011)

P
05008

Coordination and growth: the Stag Hunt game on evolutionary networks

Figure 7. Average cooperation level as a function of r at various steps of the
network’s evolution with the form (5) of the payoff matrix. Even when the
dynamics stops, the transition from cooperation to defection remains smooth.
The parameters are ε = 0.99, τD/τT = 10, m0 = 4, m = 2 and N = 2000.

clearly demonstrated in figure 7, where we show that there is a progressive increment of the
average level of cooperation during the network growth and that, even more importantly,
the shape of the transition from cooperation to defection is very smooth at every step of the
evolution, even after the achievement of the asymptotic equilibrium. Thus, although the
Stag Hunt game dynamics predicts a bistable character with two evolutionary equilibria,
given by an all-C or an all-D configuration, in this case there is a wide range of game
payoffs in which the network ends up in a mixed-strategy or in a polymorphic state,
without converging to either of the two Nash equilibria of the basic game. This result
is confirmed by the behavior of the relaxation time needed to get the equilibrium, which
does not have a peak but remains very high for the values of r which correspond to this
smooth crossover.

To our knowledge, smooth transitions from cooperation to defection in the Stag Hunt
game have been observed only in models built using real social networks with peculiar
structure or on artificial models designed to mimic real ones [25], while generally the final
configuration in static networks is given by only cooperators or only defectors. The reason
for this mixed state has recently been traced back to the appearance of topological traps
or bottlenecks in the network that prevent the propagation of one of the strategies to the
rest of the network [27]. This is in agreement with our finding here that the topological
structure of the resulting networks is now independent of the cooperation level. Indeed,
using this form of the payoff matrix, scale-free networks with a disassortative character of
the degree correlation arise for any value of r. The clustering coefficient is constant with
r and quite low 〈CC〉 = 2%. In addition, figure 8 shows another striking feature emerging
from the action of the game dynamics: plotting the strategies as a function of the nodes’
degree for some values of r, we realize that the hubs are occupied by both cooperators
and defectors which can even coexist, unlike the other case presented above, but in good
agreement with some previous results [44].
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Figure 8. Probability that a node with degree k plays as a defector for different
values of r at the end of the network’s growth, with the parametrization (5).
Hubs are occupied by both cooperators and defectors. The parameters are as in
figure 7.

Understanding the behavior of the model is not difficult if we note that the payoff
of highly connected nodes is enhanced more than for the rest of the nodes by using this
form of the payoff matrix. Adding a positive quantity to each term of the form (1), we are
in fact giving an advantage both to the growth of the hubs and to their influence in the
opinion changing. On the one hand, highly connected nodes collect more payoff than the
others and then they attract with more probability the new incoming elements, thanks to
the preferential attachment mechanism. On the other hand, the update rule becomes

P ′{st
j → st+1

i } ∝ f ′
j(t) − f ′

i(t) = fj(t) − fi(t) + Δkij , (6)

making it more probable that lowly connected nodes will imitate the hubs. Therefore,
in this case, a defector with an intermediate degree can grow, becoming a hub, because
he collects a good payoff also if he is linked to other defectors, contrary to what happens
with the parametrization (1). For this reason, hubs of cooperators and defectors can
simultaneously grow, leading to a polymorphic state in which a part of the network plays
as cooperator and the other as defector, and neither one of the two populations can invade
the other. The disassortative structure of the degree correlation confirms this hypothesis,
because the defector and cooperator hubs are not directly linked to each other, as found
also in [44] and in agreement with the existence of topological traps [27]. We thus find
a picture in which a set of nodes with low degree oscillate between cooperation and
defection, also found in [51], while the hubs do not change their strategies, giving rise to
high relaxation times. Therefore, within this form of the payoff matrix, the evolutionary
preferential attachment mechanism ‘works’ for any value of r: it produces SF networks
which support a high level of cooperation and, even more interestingly, a polymorphic state
in which hubs of cooperators and defectors coexist. We have checked that in this case SF
networks are better than homogeneous ones at supporting cooperation: the average level
of cooperation reached, even with the presence of defector hubs, is higher than in the case
of static networks.
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7. Conclusions

In summary, we have introduced and studied a model which incorporates a competition
between structural and dynamical patterns, because the rules governing the formation of
the network are linked to the dynamics of its components. While this competition was first
discussed in the framework of the Prisoner’s Dilemma, for this work we have considered
a less demanding social dilemma such as the Stag Hunt game, in which agents basically
aim to coordinate their choices. Our main conclusion is that, even if some of the results
found for the Prisoner’s Dilemma are recovered, there are many new features arising here
that make clear that both the attachment dynamics and the game through which agents
interact are determinant to the fate of the resulting network. This in turn implies that
the non-trivial interaction between the emergence of cooperation and the topology of the
underlying network depends on the specific social situation one is considering.

A very important result arising from the specific choice of the Stag Hunt game is
that the model behavior and the hierarchical organization of cooperation strongly depend
on the parametrization of the game dynamics. With some choices of the payoff matrix,
indeed, the emergence of SF networks, with hubs always occupied by cooperators, depends
on the temptation parameter r, and thus it is the direct product of the diffusion of
cooperation in the network. On the other hand, choosing a different parametrization
without changing the difference between the players’ payoff, the topological structure of
the resulting networks is independent of the game dynamics, and we obtain a polymorphic
state (uncommon for the Stag Hunt game) with the simultaneous presence of cooperator
and defector hubs. Even more interestingly, this configuration gives rise to a smooth
transition from cooperation to defection, also very unusual given the Stag Hunt bistable
game dynamics, while the average cooperation level is considerably increased with respect
to the static networks case. For a given payoff matrix, we want to stress that the
model behavior strongly depends on the setting of some of the parameters involved, such
as the initial condition, due to the evolutionary nature of the preferential attachment
mechanism, and the time scale at which the dynamical process takes place on the
structure, and therefore their choices to model specific problems or systems should be
carefully justified. This conclusion is in agreement with the realization that the outcome
of evolutionary games depends strongly on details such as the payoff structure of the
game, the characteristics of the update rule or simply the parameters involved [5, 15], and
confirms that even if the evolutionary preferential attachment rule tends to generate SF
networks in many cases, it is not an easy task to predict the cooperation level they will
give rise to.

From a more general viewpoint, we have seen that the evolutionary preferential
attachment model is a powerful and flexible instrument in order to explore the effect of
different game dynamics on the emergence and diffusion of cooperation in heterogeneous
networks, and thus it is a good candidate to explain why scale-free networks are among the
best ones to support cooperation. On more theoretical grounds, the interaction between
evolutionary games and complex network theory is a new and hot topic in the scientific
research scenario. Along the lines presented here, an open question to address in future
research is to explore the behavior of the Stag Hunt game in the S–T plane, which can
give us a complete picture of how the outcome of the model is determined by the game
dynamics. It is interesting, moreover, to search for some form of continuity between
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different games in the cooperative behavior, looking at the boundary regions with other
social dilemmas. Finally, we leave for future research the question of whether equation (3)
can be applied to other sorts of dynamics by appropriately defining the dynamical variable
fi(t) and adjusting the growth rules. In this respect, we note that modifications of the
algorithm including some link rewiring could be of interest in connection with recent
experimental results [52]. Work along these lines is in progress.
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[47] Apestegúıa J, Huck S and Oechssler J, 2006 J. Econ. Theory 136 217
[48] Strang D and Macy M W, 2001 Am. J. Soc. 107 147
[49] Vega-Redondo F, 1997 Econometrica 65 375
[50] Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K, Feldman M W, Fogarty L, Ghirlanda S,

Lillicrap T and Laland K N, 2010 Science 328 208
[51] Floria L M, Gracia-Lazaro C, Gomez-Gardenes J and Moreno Y, 2009 Phys. Rev. E 79 026106
[52] Corten R and Buskens V, 2010 Soc. Netw. 32 4

doi:10.1088/1742-5468/2011/05/P05008 17

http://dx.doi.org/10.1209/0295-5075/86/30007
http://dx.doi.org/10.1088/1367-2630/11/9/093033
http://dx.doi.org/10.1371/journal.pone.0011187
http://dx.doi.org/10.1371/journal.pone.0002449
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1209/0295-5075/88/38003
http://dx.doi.org/10.1103/PhysRevLett.89.258702
http://dx.doi.org/10.1016/j.jet.2006.07.006
http://dx.doi.org/10.1086/323039
http://dx.doi.org/10.2307/2171898
http://dx.doi.org/10.1126/science.1184719
http://dx.doi.org/10.1103/PhysRevE.79.026106
http://dx.doi.org/10.1016/j.socnet.2009.04.002
http://dx.doi.org/10.1088/1742-5468/2011/05/P05008

	1. Introduction
	2. The model
	3. Results
	4. Discussion
	5. Influence of the parameters
	6. Role of the game dynamics
	7. Conclusions
	Acknowledgments
	References

