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Cooperation in scale-free networks with limited associative capacities
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In this work we study the effect of limiting the number of interactions (the associative capacity) that a node
can establish per round of a prisoner’s dilemma game. We focus on the way this limitation influences the level of
cooperation sustained by scale-free networks. We show that when the game includes cooperation costs, limiting
the associative capacity of nodes to a fixed quantity renders in some cases larger values of cooperation than in
the unrestricted scenario. This allows one to define an optimum capacity for which cooperation is maximally
enhanced. Finally, for the case without cooperation costs, we find that even a tight limitation of the associative
capacity of nodes yields the same levels of cooperation as in the original network.
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Recent studies have shown that cooperation among unre-
lated individuals has a much better chance to survive when their
interaction patterns are described through a complex network
[1–7]. Specifically, it has been proven that the heterogeneous
character of the number of social contacts each individual
has not only reproduces the topological features of many
social systems [8,9] much better, but also greatly favors the
emergence of cooperation. The paradigmatic example of such
enhancement of cooperation appears within the framework of
the prisoner’s dilemma (PD) game on scale-free (SF) networks.
In these structures, the probability of finding an individual
with k social contacts is given by a power-law distribution
P (k) ∼ k−γ . Therefore, although most individuals have few
connections, there exists a significant number of individuals,
the hubs, with a large number of social contacts. The special
topology of SF networks favors the formation of cooperator
clusters centered around the hubs of the network. These
clusters of cooperators provide their members with a stable
source of benefits, which ultimately allows them to resist
cycles of invasions from defectors [10].

The ability of SF networks to promote cooperation has
been intensively studied in recent years by incorporating
other mechanisms and topological features that could further
enhance or decrease the emergence of cooperation [11,12].
Studies about the topological impact of the SF architecture
include the effects that the average connectivity [13], the
clustering coefficient [14,15], and the degree-degree corre-
lations [16] have on the evolutionary success of cooperation.
In addition, different mechanisms such as reputation [17,18],
the diversity of reproductive rates [19], and the coevolution
of different update rules [20] have shown how to reinforce
the resilience of cooperation in SF graphs that has turned
out to be robust under different scenarios [21,22]. However,
the amplification of cooperation provided by SF networks
decreases when other features such as the normalization of
payoffs to the degree of the nodes [23,24], the conformity of
players, [25], or other update rules [26,27] are introduced.

The above works aim at modeling relevant aspects of human
behavior in social networks. Nonetheless, it is usually assumed
that the number of interactions that a node establishes in
every round of an evolutionary game is equal to the number

of topological neighbors it has, as dictated by the complex
network of interactions. This consideration, although valid
when dealing with a regular network whose nodes have a
moderate degree of interaction, is difficult to justify when
heterogeneous networks are considered. In particular, it is hard
to sustain that a social hub will interact concurrently with all
its acquaintances during the time window associated with a
round robin of the evolutionary game. In other words, one
should abandon the hypothesis of an unlimited associative
capacity of the individuals. Admittedly, this restriction has
been previously found to play a key role in the spreading of
diseases [28,29].

In this work we are interested in studying the effect of
restricting the number of interactions that a node is allowed
to make per unit of time when involved in a social dilemma
on SF networks. To this end, we consider that every node
of the network will only establish a fixed number k∗ of
interactions randomly chosen among its topological neighbors.
The specific social dilemma that will take place on top of
the SF networks will be a PD game, and we will consider
its formulation both with and without cost per cooperation.
Moreover, we will also consider two types of updating
rules: a replicatorlike rule and the Fermi-like setup. Our
results indicate that in the case of a cost-per-cooperation
formulation of the prisoner’s dilemma game, and for both
update rules, there is an optimum number of interactions
k∗

opt which renders larger values of cooperation in the system
than the (usual) unlimited scenario. Nevertheless, when no
cost per cooperation is considered, we find that the level of
cooperation increases with k∗. However, this growing behavior
saturates at values of k∗ well below its maximum possible
value, thus pointing out that it is not necessary to exploit the
full associative capacity of network nodes to achieve the large
levels of cooperation observed in SF networks.

We first build up scale-free networks using the Barabási-
Albert (BA) procedure [30]. Starting from a small set m0 of
fully connected nodes, we sequentially add a new node j to
the network. Every new node will attach to m of the existing
nodes. The probability that a link from j connects with an
existing node i is proportional to its degree, Pi = ki∑

l kl
. This

procedure continues until the network reaches its final size N .
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The degree distribution, i.e., the probability of finding a node in
the network with k neighbors, is a power-law P (k) ∼ k−γ with
an exponent γ = 3, and the average connectivity is 〈k〉 = 2m.
In our case, we have used networks of size N = 4 × 103 nodes
and an average value for the connectivity 〈k〉 = 4.

We consider that every node on the network represents
a player of a prisoner’s dilemma (PD) game so that it can
adopt two possible strategies: cooperation (C) and defection
(D). The initial strategies of the players are randomly assigned
with equal probability. As usual in an evolutionary setting, we
iterate a large number of rounds of the PD game. However, in
each of these rounds, we do not let nodes play with all their
topological neighbors, but we force each node to choose, also
randomly, k∗ partners among their respective acquaintances.
Obviously, when a node has ki < k∗, it will play with all its
neighbors in every round. However, when ki > k∗, a node will
choose a subset of them, making a different selection in every
round. Notice that in order to preserve the symmetry of the
interactions, when a node i chooses a node j , it automatically
implies that j also plays with i (even in the case where j does
not choose i to play in this round). Therefore, once a node has
chosen its k∗ partners, the total number of nodes that play with
it (its effective connectivity) is not strictly k∗ but in general
keff
i > k∗. It is easy to show that for a SF network, like those

used in this work, this effective connectivity reads

keff
i ≈ k∗ + ki

[
1 − k∗

ki

][
1 − 1

k∗

]
. (1)

The above expression implies that the average effective degree
〈keff〉 of the interaction network relates with the topological
one 〈k〉 as

〈keff〉 ≈ 〈k〉
[

1 −
( 〈k〉

2k∗

)2]
. (2)

Once all of the nodes have set their current effective neigh-
borhood, they play a PD game with each of their keff

i game
mates. We first explore the interaction between cooperators
and defectors by means of a PD with participation cost. In
this setting, a cooperator node i pays a cost c for each of the
keff
i games, while the node playing with it obtains a payoff

b (being b > c). However, nodes playing as defectors pay no
cost and distribute no benefits. Under these conditions, the
payoff matrix associated with each game reads [31]

C D

C

D

(
b − c −c

b 0

)
∼

C D

C

D

(
b/c − 1 −1

b/c 0

)
.

(3)

Note that the second payoff matrix defines an equivalent PD
game with the advantage of having a single parameter, which
is the benefit-to-cost ratio b/c. Obviously, the larger the ratio
b/c gets, the cheaper it becomes to be a cooperator.

The benefits collected by a node i after playing with
its effective neighborhood are finally accumulated and
constitute its evolutionary fitness πi . Immediately afterwards,
each node updates its strategy by comparing its own payoff
with the payoff of one of its neighbors randomly chosen
from the current effective neighborhood. For the probability
that a node i imitates the strategy of the chosen neighbor j

for the next round of the game, we use the so-called Fermi

rule [32–34],

Pi→j = 1

1 + ew(πi−πj ) , (4)

where w is a parameter that accounts for the importance of
the relative difference of payoffs on the change of strategy of
node i. Notice that for w → ∞, Pi→j depends strongly on the
payoff difference, so that if πi < πj , then i will almost surely
imitate j , while if πi > πj , then i will not take the strategy
of j in most cases. However, for w → 0, the probability of
changing strategies is Pi→j 	 1/2, regardless of the values of
the payoffs (this case is referred to as the random drift limit).
The results shown in this work correspond to the value w = 1.
Nonetheless, we have checked that they are quite robust, as
other values of w give qualitatively the same outcomes.

We iterate the above discrete-time dynamics for a large
number of time steps, until the system reaches one of the
two absorbing states: fixation of cooperation (all-C state) or
fixation of defection (all-D state). The dynamics always ends
up in one of the two latter frozen equilibria due to the irrational
changes of strategies allowed by the Fermi rule given by
Eq. (4), i.e., a node always have a nonzero probability of
adopting the neighbor’s strategy, even when the neighbor’s
payoff is smaller than its own. Therefore, it is necessary to
make a large number of different realizations of the network
dynamics for a particular value of the game parameter b/c

so as to compute the probability of fixation to the all-C state
〈c〉. In this way, the outcome of the evolutionary dynamics is
described by the function 〈c〉(b/c).

In Fig. 1 we show 〈c〉 as a function of the ratio b/c for
different values of the restriction k∗. As expected, the larger
the value of b/c is, the cheaper being a cooperator is, and
thus the larger the probability of fixation to cooperation on the
system is. However, we have found a stunning and nontrivial
dependence with the value of the restriction for the number
of connections k∗. From Fig. 1 it is clear that for low values
of b/c, i.e., when the cooperation is relatively expensive, the
largest level of 〈c〉 is achieved when no restriction is imposed
to the connectivity of the nodes (k∗ = kmax actually means that
every node i plays always with all its ki topological neighbors).
However, for larger values of the ratio b/c, the opposite
trend occurs, and a network with some level of connectivity
restriction performs better than the original one, meaning that
it achieves larger values of 〈c〉. Moreover, our numerics have
shown that a too restrictive value for k∗ � 10 always performs
worse, regardless of the value of b/c.

The observed crossover occurring for intermediate values of
b/c suggests that for each value of b/c in this range, there exists
an optimum value of k∗ for which the maximum value of 〈c〉
is reached. In Fig. 2 we represent the probability of fixation to
cooperation as a function of k∗ for a fixed value of the ratio b/c.
As predicted, we obtain a nonmonotonous behavior of 〈c〉 as k∗
increases, yielding an optimum value of k∗, namely, k∗

opt. From
the different curves, we observe that the value of k∗

opt becomes
larger as cooperation gets more expensive, as expected from
Fig. 1. On more general grounds, the optimal cooperation
reached at k∗

opt points out a resonancelike phenomenon, such
as those found in [35–37] by tuning the game parameters.

In order to better understand the origin of the optimum
value for the number of interactions k∗

opt, we next study the
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FIG. 1. (Color online) Probability of fixation to cooperation 〈c〉
as a function of the ratio b/c for a PD game with limited associative
capacities using a Fermi updating rule. The scale-free networks are
made up of N = 4 × 103 nodes, and the average connectivity is 〈k〉 =
4. Every point is the average over 500 different realizations.

evolution of cooperation in a different scenario: the PD game
without cooperation costs. By introducing this change in our
original model, we want to unveil the role of cooperation costs
in the observed optimum in the number of interactions per
node. In this way, we will consider the PD game together with
the Fermi update given by Eq. (4), with the payoff matrix as

C D

C

D

(
R S

T P

)
=

C D

C

D

(
1 0
b 0

)
,

(5)

where we have fixed, as usual, R = 1 and P = S = 0, while
the temptation to defect, T = b, remains as the only parameter
of the evolutionary dynamics.

In Fig. 3 we show the probability of fixation to cooperation
in the system as a function of the restriction k∗ for different
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FIG. 2. (Color online) Probability of fixation to cooperation 〈c〉
as a function of the restriction k∗ for different values of the ratio
b/c. Network parameters are those used in Fig. 1. Every point is the
average over 2 × 103 different realizations.
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FIG. 3. (Color online) Probability of fixation to cooperation 〈c〉
as a function of the associative capacity k∗ for the case of a PD
game without cooperation cost combined with the Fermi updating
rule. Network parameters are those used in Fig. 1. Every point is the
average over 200 different realizations.

values of b. We clearly observe that for any fixed value
of b, the value of 〈c〉 grows with k∗. A direct comparison
between Fig. 3 and Fig. 2 suggests that the optimum value
k∗

opt was previously observed due to the compromise for each
node between the costs associated to cooperate with all its
neighbors and the benefits obtained in those interactions. In
fact, when cooperation costs are applied, a cooperator within a
neighborhood containing a given number of defector neighbors
decreases its payoff as its associative capacity increases.
However, in the absence of costs, the benefits received by
this cooperator do not decrease (on average) as k∗ increases.
Furthermore, although an optimal value k∗

opt is not observed,

all the curves 〈c〉(k∗) saturate beyond a certain value of k∗ = k
′

that is well below the largest degree of the network. Therefore,
from this value on, increasing further the number of interacting
partners does not benefit cooperation. In this sense, the value k

′

points out that it is not necessary to exploit the full associative
capacity of nodes to achieve large values for the fixation to
cooperation.

Finally, as a further check, let us consider again the PD
game with cooperation costs, given by Eq. (3), combined with
the replicatorlike update rule [3]. Following this update rule,
after each round of the PD game, each individual i chooses
at random one member j of its effective neighborhood and
compares their payoffs. If πi > πj , then nothing happens (i
keeps playing with the same strategy), but if πj > πi , then i

will imitate the probability of j with probability

Pi→j = πj − πi

max
(
keff
i ,keff

j

)
b
. (6)

Note that at variance with the Fermi rule, in this case a
node will not imitate a worse performing strategy. As a
consequence, the computed values of 〈c〉 account for the
average fraction of cooperators in the dynamical equilibrium.
In Fig. 4 we show the curves 〈c〉(k∗) for different values
of b/c. In this setting, the optimum capacity k∗

opt reappears,
although it is not as pronounced as in the formulation using a

057101-3



BRIEF REPORTS PHYSICAL REVIEW E 83, 057101 (2011)

20 30 40 50 60 70 80 90 100
k*

0

0.2

0.4

0.6

0.8

1

<
C

>

b/c=4.2
b/c=4.0
b/c=3.8
b/c=3.7

FIG. 4. (Color online) Average level of cooperation 〈c〉 as a
function of the mate limitation k∗ using the replicator updating
rule and the formulation of the prisoner’s dilemma with cost for
cooperation. Network parameters are those used in Fig. 1. Every
point is the average over at least 200 different realizations.

Fermi update rule. However, this latter result further confirms
that the key ingredient for the existence of an optimum
value for the associative capacity is the cost associated to
cooperation.

In summary, in this Brief Report we have studied a realistic
scenario where the number of interactions that a node can
establish per round of the game is restricted to a maximum

value k∗, regardless of the topological connectivity of the
nodes. We have studied the effect of such restrictions on the
cooperation achieved by SF networks playing a PD game with
cooperation costs. Our main result is that for a range of values
of the benefit-to-cost ratio b/c of the payoff matrix, the largest
probability of fixation to cooperation is achieved when the
associative capacity of nodes is limited, i.e., the higher levels of
cooperative behavior do not occur for the original SF network.
This result allows us to define an optimal associative capacity
k∗

opt for a fixed value of the ratio b/c. The optimum is related
to the tradeoff between the cost of cooperating and the number
of neighbors a node plays with. This hypothesis is confirmed
by changing the formulation of the social dilemma to the one
in which the cooperation cost is zero. We have shown that, in
most cases, a moderate limitation of the associative capacity
of nodes leads to the same degree of cooperation as in the
original (unlimited) network.

In conclusion, the results shown in this work point out that
although the degree of heterogeneity of SF networks does
greatly favor cooperation, it is possible to obtain larger (PD
with cooperation costs) or similar (PD without cooperation
costs) levels of cooperation by limiting the associative capac-
ities of the nodes. Therefore, it is not necessary to exploit the
full associative capacity of nodes in SF networks to reach large
levels of cooperation.
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