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a b s t r a c t

We report on the existing connection between power-law distributions and allometries. As
it was first reported in Gomez-Lievano et al. (2012) for the relationship between homicides
and population, when these urban indicators present asymptotic power-law distributions,
they can also display specific allometries among themselves. Here, we present an extensive
characterization of this connection when considering all possible pairs of relationships
from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income,
sanitation and unemployment). Our analysis reveals that all our urban indicators are
asymptotically distributed as power laws and that the proposed connection also holds for
our datawhen the allometric relationship displays enough correlations.Wehave also found
that not all allometric relationships are independent and that they can be understood as a
consequence of the allometric relationship between the urban indicator and the population
size. We further show that the residuals fluctuations surrounding the allometries are
characterized by an almost constant variance and log-normal distributions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There has been a remarkable and growing interest in investigating social systems through the framework of statistical
physics over the last decades [1–6]. The majority of these studies are however focused on models and proprieties that
often resemble those of phase transitions [2]. Despite its evident importance, considerably less and uneven attention has
been paid towards working out empirical data related to social systems. For instance, empirical-driven investigations on
financial markets [7,8] are much more abundant than those related to urban systems. Furthermore, since more than a half
of the human population lives in urban areas [9,10], it is crucial to identify and understand patterns of urban systems.
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Among several properties of urban systems, there are two which are remarkable and ubiquitous: the emergence of
asymptotic power-law distributions and allometries for wide range of variables that somehow characterize the urban
systems (urban indicators or metrics). On one hand, population [11,12], building sizes [12], personal fortunes [13], firm
sizes [14], number of patents [15], and other indicators have been found to asymptotically follow power-law distributions.
On the other hand, allometries with the population size have been reported for crime [16–18], suicide [19], several urban
metrics including patents, gasoline stations, gross domestic product [20–22], number of election candidates [23], party
memberships [24], among others. These allometries were recently modeled by Bettencourt [25] via a small set of simple
and locally-based principles. However, it was only recently that the connection between these two features was elucidated
by Gomez-Lievano et al. [26]. In their work, they have shown, for the relationship between homicides and population, that
when both urban indicators are asymptotically distributed as power laws, these urban indicators can also exhibit a particular
allometric relationship. More specifically, the exponent of the allometry can be fully determined from the exponents of
the power-law distributions. Here, we aim to empirically extend these results through an extensive characterization of all
possible pairwise relationships from 12 urban indicators of Brazilian cities. Our results show that the connection proposed
by Gomez-Lievano et al. also holds for our data when there is enough correlation in the allometric relationship. We also
discuss that not all allometric exponents are independent and that, in fact, the allometries between pairs of urban indicators
can be understood as a consequence of the allometric relationship between the urban indicator and the population size.

This work is organized as follows. We first describe our database. We next investigate the hypothesis that these
urban indicators are asymptotically distributed as power laws by employing the statistical procedure proposed by Clauset
et al. [27]. Then, we characterize all possible allometric relationships between pairs of urban indicators by accounting for the
degree of correlation between them. We thus discuss that when enough correlation in the allometry exists, the allometric
exponent can be determined from the power-law exponents of the distributions of urban indicators. We also discuss that
the constant behavior of the variance of the fluctuations surrounding the allometries and the log-normal distribution of
these residuals are consistent conditions for the applicably of the connection between power laws and allometries. Finally,
we present a summary of our findings.

2. Data presentation

We have accessed data of Brazilian cities in the year of 2000 made freely available by the Brazil’s public healthcare
system—DATASUS [28]. In particular, for our analysis, we select 2862 cities (about 51% of Brazilian cities) for which all
values of the urban indicators were available. The database is thus composed of twelve urban indicators Yi at city level.
They are: total population (i = 0), number of cases of child labor (i = 1), population older than 60 years (i = 2), female
population (i = 3), gross domestic product—GDP (i = 4), GDP per capita (i = 5), number of homicides (i = 6), number of
illiterate older than 15 years (i = 7), average family income (i = 8), male population (i = 9), number of sanitation facilities
(i = 10), and number of unemployed older than 16 year (i = 11). More details about these urban indicators can be found in
the Refs. [28,18]. It is worth noting that, despite there being more than one definition for the concept of city [29], we here
have considered that cities are the smallest administrative units with a local government, and it is beyond the scope of this
work to discuss the role of other definitions.

3. Methods and results

We start our investigation by testing the hypothesis that the 12 urban indicators are distributed according to asymptotic
power laws. In order to do so, we first evaluate the cumulative distribution functions for all urban indicators. As shown in
Fig. 1, the shapes of the distributions can be approximated by asymptotic power laws [Pi(Yi) ∝ Y−αi

i ], evidenced here by
the linear behavior (in log–log plots) of the distributions for large values of urban indicators. To strengthen this result, we
employ the statistical procedure proposed by Clauset et al. [27], which is a systematic way for statistically testing empirical
power-law distributions. Due the discrete nature of most of our urban indicators, we have considered the discrete version of
the procedure. In this case, we apply the maximum-likelihood fitting procedure by considering the probability distribution
function

Pi(Yi) =
Y−αi
i

ζ (αi, Yi,min)
, (1)

where ζ (αi, Yi,min) =


∞

n=0(Yi,min + n)−αi is the Hurwitz zeta function (it ensures the normalization of Pi(Yi) when Yi only
takes discrete values), Yi,min is a parameter representing the beginning of the power-law regime, and αi is the power-law
exponent. After finding the best fit parameters, we evaluate the goodness-of-fit via the Cramér–von Mises test.

We have thus applied Clauset et al.’s procedure to our data and the results, that is, the values of αi and Yi,min as well as
the p-value of the Cramér–von Mises test are also shown in Fig. 1. Notice that we cannot reject the power-law hypothesis
at a confidence level of 99% for nearly all urban indicators. The only exception is the number of homicides, for which the
p-value is 0.002. We observe, however, that the Cramér–von Mises statistic is dominated by the extreme values of the
number of homicides, wherewe note a cut-off-like behavior. In this case, after removing the cities with the 10 largest values,
the power-law hypothesis cannot be rejected. It is worth noting that, for testing the multiple hypothesis that all urban
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Fig. 1. Cumulative distributions of 12 urban indicators of Brazilian cities in the year 2000. We note that all distributions display asymptotic power-law
decayswhich arewell described by power-law functions Pi(Yi) ∼ Y−αi

i for Yi ≥ Yi,min (dashed lines). In each case, the parametersαi and Yi,min (shown in the
plots) were obtained via maximum-likelihood fits. We also observe that the p-values of the Cramér–von Mises tests (shown in the plots) indicate that we
cannot reject the power-law hypothesis at a confidence level of 99% for all indicators, except by the number of homicides (see discussion in the main text).

indicators are asymptotically power-law distributed, we need to consider (for instance) the Bonferroni correction [30]. For
our case, it implies in assuming a significance level of 0.05/12 for each hypothesis testing (for confidence level of 95%). Still,
we cannot reject the asymptotic power-law hypothesis for all urban indicators (except by number of homicides). Despite
the good agreement, we note that the power-law fits hold only for the tails of the empirical distributions, that is, for a small
fraction of the entire dataset. In order to describe not only the tails of these distributions, some authors have employed
other functional forms such as the log-normal [31] and the stretched exponential [32] distributions. For our data, these
two distributions have failed to describe the entire dataset. Because our main goal is to investigate the connection between
power laws and allometries, we will concentrate on the tails of these distributions, for which we have verified that the 12
urban indicators can be modeled by asymptotic power laws, confirming our initial hypothesis and also in agreement with
previous reports based on other countries data [20–22].

We now focus on the question of whether the power-law distributions for urban indicators imply in allometric
relationships between pairs of indicators. Aswe havementioned, this questionwas first posed in thework of Gomez-Lievano
et al. [26] when investigating the relationships between population size and number of homicides. The following analytical
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Fig. 2. (Color online) Examples of allometries between urban indicators: (a) homicides versus population, (b) child labor versus population and (c)
homicides versus child labor. The markers are base-10 logarithm of the values of the urban indicators Yi versus Yj for each city. The blue dots represent
those cities which have Yj ≥ Yj,min and gray squares are those for which Yj < Yj,min (Yj,min is the one obtained in Fig. 1). The dashed lines are ordinary linear
least square fits to the points obeying the condition Yj ≥ Yj,min and the slope of each line is equal to the allometric exponent β

(f )
i,j (shown in the plot).

developments are only a revision of the results present in their article. Gomez-Lievano et al. proposed that if the shape for
the allometry is well established, we can write

Pi(Yi) =

∞
Yj=Y∗

j

Pi,j(Yi | Yj)Pj(Yj), (2)

where Pi(Yi) is the probability distribution of the urban indicator Yi and Pi,j(Yi | Yj) is the conditional probability representing
the fluctuations surrounding the allometry between the indicators Yi and Yj. We already know that Pi(Yi) has the power-
law form of Eq. (1) and following empirical findings (details will be provided soon on), we will assume that the conditional
probability is a log-normal distribution

Pi,j(Yi | Yj) =
1

Yi


2π σ 2

i,j(Yj)
exp


−

[ln Yi − µi,j(Yj)]
2

2 σ 2
i,j(Yj)


, (3)

in which µi,j(Yj) and σ 2
i,j(Yj) represent possible dependences of the log-normal parameters on the indicator Yj. In particular,

because we are also assuming that there exists an allometry between Yi and Yj (that is, Yi ∝ Y
βi,j
j ), the functional form of

µi,j(Yj) is

µi,j(Yj) = ln[Ai,j Y
βi,j
j ], (4)

if we consider the standard deviation not dependent on Yj (that is, σ 2
i,j(Yj) = σ 2

i,j).
After considering all the previous assumptions, we can employ Eq. (2) by replacing the sumby an integral and considering

Y ∗

j sufficiently small. In fact, after some calculations (see methods section of Ref. [26] for details), we have

Pi(Yi) ∝ Y
−

(αj−1)
βi,j

−1

i . (5)

Now, remembering that Pi(Yi) ∼ Y−αi
i , we can write the relationship between the allometric exponent (βi,j) and the power-

law exponents (αi and αj) as

βi,j =
αj − 1
αi − 1

. (6)

It is worth noting that the same relationship could have been obtained by using Pi(Yi)dYi = Pj(Yj)dYj. However, when doing
this calculation we also have to assume that the allometry between Yi and Yj is an exact expression (not displaying any
randomness), which is not the case as we shall see.

The developments of Gomez-Lievano et al. [26] thus analytically prove that when the urban indicators present power-
law distributions, they can also display allometric relationships with particular exponents. In order to empirically test this
result, we investigate all possible allometries between pairs of urban indicators in our data. Specifically, we have analyzed all
these relationships by considering the logarithm of the urban indicators and by adjusting (via ordinary least squaremethod)
the linear function

log10 Yi = Ai,j + β
(f )
i,j log10 Yj (7)

to all of them. Here Ai,j = log10 Ai,j is an empirical constant and β
(f )
i,j is the empirical value of the allometric exponent

(obtained after fitting the allometry). Fig. 2 shows examples of allometries between the urban indicators population size,
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Fig. 3. (Color online) Empirical values of the allometric exponents β
(f )
i,j obtained from all possible pairs of relationship (in logarithmic scale) between our

12 urban indicators. This matrix plot shows the value of β(f )
i,j , where the row captions represent the case in which the urban indicator is employed as the

dependent variable (y axis) and column captions represent the case in which the urban indicator is employed as the independent variable (x axis). The
color code shows the value of Pearson correlation coefficient ρi,j for each allometry.

number of homicides and number of cases of child labor. Towards finding the values of β
(f )
i,j , we have applied a cut-off in

the abscissas axis considering only the values of Yj that are larger than Yj,min (the beginning of the power-law regime in the
distribution of Yj, see Fig. 1). The blue dots in Fig. 2 are the points obeying this condition and the dashed lines represent the
linear functions adjusted to the data.We repeat this procedure to all possible allometries and Fig. 3 shows amatrix plot with
all the values of β

(f )
i,j . We have further characterized the quality of these allometries by calculating the Pearson correlation

coefficient ρi,j for the linearized allometric relationships (that is, log10 Yi versus log10 Yj), which is displayed in Fig. 3 through
the color code. We note that the majority of the relationships present ρi,j values larger than 0.5 (≈70%). However, we also
observe two systematic exceptions: the allometries with urban indicators GDP per capita and income. The reason for this
deviant behavior is related to the fact that these two indicators are defined per capita and per family. This result also suggests
that the main source of correlation between two indicators Yi and Yj (i ≠ j ≠ 0) comes from their relationships with the
population size Y0 (we will investigate this hypothesis soon).

Now, we can quantitatively compare the values of β
(f )
i,j (estimated by fitting the allometries) to the values of βi,j

(analytically obtained from Eq. (6)). Fig. 4(a) shows a scatter plot of β(f )
i,j versus βi,j for allometries with Pearson correlation

ρi,j larger than 0.5. We observe that a linear function (with no additive constant) describes quite well the relation between
β

(f )
i,j and βi,j, specially if we take the standard errors of the values of β(f )

i,j (shaded area) into account. We have also observed
that the quality of this linear relationship deteriorates when we start considering allometries with smaller values of ρi,j.
Thus, in addition to be distributed as power laws, the indicators Yi and Yj should also present a good quality allometry (large
value of ρi,j) in order for the relationship of Eq. (6) to be valid.

It is worth noting that although we have considered all power-law exponents β
(f )
i,j independent, they are actually

dependent on each other. Firstly, the allometric exponent of the relationship between Yi and Yj is supposed to be the
inverse of that obtained for the relationship between Yj and Yi. For the empirical values, we observe small deviations in
this relationship due to the different cut-offs applied to the abscissa axis. However, when taking the confidence intervals for
the values of β

(f )
i,j into account, we have verified that this inverse relationship between the values of allometric exponents

holds in most of the cases. Secondly and, importantly, when we have that Yi ∼ Y
β

(f )
i,k

k and Yj ∼ Y
β

(f )
j,k

k directly follow that

Yi ∼ Y
β

(f )
i,j

j with β
(f )
i,j = β

(f )
i,k /β

(f )
j,k (for noiseless relationships). This result implies that the allometries between all pairs of

indicators Yi (i ≠ 0) can be understood as a consequence of the allometric relationship between the indicator Yi and the
population size Y0. Nevertheless, noisy allometric relationships and the fact that Pi(Yi) is not a perfect power-lawmay have
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Table 1
Values of the linear coefficients ai,j (intercept), bi,0 (population) and bi,j (indicator) obtained via ordinary least-squares fits with a correction to
heteroskedasticity. Here we show only the regressions where bi,j is statistically different from zero.

Intercept Population Child labor GDP GDP per capita Homicides Illiteracy Income Unemployment

Child labor −1.99 0.69 – – – – 1.26 – –
0.95 0.84 – – – – – −1.05 –
0.74 0.86 – – – – – – −3.26

GDP −4.16 1.21 – – 1.68 – – – –
0.80 0.97 – – – 1.94 – – –
1.77 1.27 – – – – −1.69 – –

−2.17 1.05 – – – – – – 4.89

GDP per capita −5.22 0.50 – 9.16 – – – – –
3.80 −0.03 – – – 1.94 – – –
4.77 0.27 – – – – −1.69 – –
0.83 0.05 – – – – – – 4.89

Homicides −10.07 1.45 – 5.57 – – – – –
−7.51 1.28 – – 0.98 – – – –
−9.81 1.11 – – – – – – 9.37

Illiteracy −0.92 0.72 1.05 – – – – – –
1.45 0.74 – −1.96 – – – – –
0.66 0.80 – – −0.38 – – – –
1.78 0.84 – – – – – −1.17 –

Income 2.55 0.24 −0.86 – – – – – –
3.00 0.27 – – – – −1.09 – –

Unemployment −1.05 1.13 −0.70 – – – – – –
−2.92 1.15 – 1.61 – – – – –
−2.21 1.09 – – 0.30 – – – –
−1.16 0.99 – – – 1.21 – – –

a b

Fig. 4. (a) Comparison between the empirical values of the allometric exponentsβ
(f )
i,j (obtained via linear fits) and the analytical onesβi,j (obtained fromEq.

(6)). The squares are the values of β(f )
i,j versus βi,j where the Pearson correlation coefficient ρi,j characterizing the allometry is larger than 0.5. (b) Empirical

verification of the linear relationship between β
(f )
i,j and β

(f )
i,0 /β

(f )
j,0 (squares) when considering ρi,j ≥ 0.5. In both plots, the shaded areas represent the stan-

dard errors ofβ(f )
i,j after smoothing the datawith amoving average filter ofwindow size 5 and the dashed lines are linear functionswith no additive constant.

a nontrivial role in the empirical values of βi,j. In Fig. 4(b), we have empirically tested the relationship β
(f )
i,j = β

(f )
i,0 /β

(f )
j,0 and

the results show that it holds for allometries with ρi,j larger than 0.5. Also in this case, the quality of linear relationship
between β

(f )
i,j and β

(f )
i,0 /β

(f )
j,0 deteriorates when we start considering allometries with smaller values of ρi,j.

The fact that the allometry between Yi and Yj (i, j ≠ 0) being a consequence of their allometric relationships with the
population size Y0 does not necessarily mean that the indicator Yj has no explanatory potential for describing Yi. In order to
test this possibility, we have adjusted the following generalized linear model:

log10 Yi = ai,j + bi,0 log10 Y0 + bi,j(log10 Yj)/(log10 Y0)
β

(f )
i,j , (8)

to our data, considering all possible pairs of relationships between log10 Yi and log10 Yj, but excluding the indicators elderly
population, female population, male population and sanitation, since they form an almost perfect linear relationship with
the population. Thus, every bi,j statistically different from zero indicates that log10 Yj presents an explanatory potential for
describing log10 Yi, which is not related to its own relationship with log10 Y0. In Table 1, we show the regression results for
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a b

Fig. 5. (a) Variances σ 2
i,jw

of the fluctuations surrounding the allometries (in base-10 logarithmic scale) for each urban indicator. It is worth noting that σ 2
i,jw

does not display any particular form and that it can be approximated by a constant function. (b) Cumulative distributions of the normalized fluctuations
ξi,j surrounding the allometries (crosses). The squares are the average values over all distributions, the error bars are 95% confidence intervals obtained
via bootstrapping, and the dashed line is a standard Gaussian distribution (zero mean and unitary variance). In both plots, we have considered only the
allometric relationships where the Pearson correlation ρi,j is larger than 0.5.

which we cannot reject the hypothesis of the coefficient bi,j being different from zero (at a confidence level of 99%). Note
that, from the 49 possible pairs of relationships, 24 present a bi,j statistically significant. Thus, the noise surrounding the
allometries with the population actually contains additional information that can be used for explaining the Yi in function
of Yj. We have made similar considerations when considering the distance to the power laws for unveiling relationships
between crime and urban indicators [18].

We now address the question of the fluctuations surrounding the allometries aiming to verify the two remaining
hypotheses in the calculations of Gomez-Lievano et al.: the constant behavior of the log-normal parameter σ 2

i (Yi) and
the log-normal distribution of fluctuations. In order to access these hypotheses, we have binned the linearized allometric
relationships (log10 Yi versus log10 Yj with Yj > Yj,min) in w equally spaced windows, and for each one, we evaluate the
variance σ 2

i,jw
. Notice that in this log–log scale the value of variance σ 2

i,jw
is approximately equal to the value of log-normal

parameter σ 2
i,j(Yj); therefore, verifying that σ 2

i,jw
is not dependent on log10 Yj is equivalent to showing that σ 2

i,j(Yj) is constant.
Fig. 5(a) shows the behavior of σ 2

i,jw
on the window average value of log10 Yj. We observe that there is no clear dependence

in these relationships and that the behavior can be approximated (roughly for some allometries) by a constant function,
where the plateau value changes from indicator to indicator. Finally, to study the log-normal hypothesis, we evaluate the
normalized fluctuations surrounding the linearized allometric relationships, that is,

ξi,j =
log10 Yi − ⟨log10 Yi⟩w

σi,jw
, (9)

where ⟨log10 Yi⟩w stands for the window average value of log10 Yi. Fig. 5(b) shows the cumulative distribution of ξi,j
for all our urban indicators. We observe that these distributions are in well agreement with the standard Gaussian.
Therefore, if ξi,j is normally distributed, Pi,j(Yi | Yj) (which represents the fluctuations in the usual scale) should follow a log-
normal distribution, confirming our initial hypothesis and also connecting the surrounding fluctuations to multiplicative
processes [18]. Analogous to the allometric exponents, not all these distributions are independent because by knowing
Pi,0(Yi | Y0) and Pj,0(Yj | Y0) we can also calculate Pi,j(Yi | Yj).

4. Summary

We presented an extensive characterization of the connection between power-law distributions and allometries by
considering 12 urban indicators from Brazilian cities. We initially verified that these 12 indicators are distributed as power
laws via a rigorous statistical analysis. Next, we revisited the calculations of Gomez-Lievano et al. [26] for showing that,
under certain hypotheses, the power-law distributions of the urban indicators can be related to the allometries between
them. We empirically verified the predictions of those calculations and also whether the necessary hypotheses hold or not.
In particular, we verified that the relationship between the power-law exponents and the allometric exponents is satisfied
in most of the cases and that an additional condition is the quality of the allometry, measured here by Pearson correlation.
We also argued that the allometric exponents are not independent of each other but, in fact, allometries between pairs of
indicators (Yi and Yj with i, j ≠ 0) can be understood as a consequence of the allometric relationship of each one with the
population size (Y0). We further confirmed the two hypotheses underlying the calculations of Gomez-Lievano et al., that
is, the constant behavior of the variance and the log-normal distributions of fluctuations surrounding the allometries. We
thus believe that our empirical investigation contributes to consolidate the connection between power-law distributions
and allometries and also reveals additional conditions underlying this relationship.
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