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Abstract – The spatial dynamics of criminal activities has been recently studied through statisti-
cal physics methods; however, models and results have been focusing on local scales (city level) and
much less is known about these patterns at larger scales, e.g. at a country level. Here we report
on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory
using data from all cities (∼5000) in a period of more than thirty years. Our results show that
the spatial correlation function in the per capita homicides decays exponentially with the distance
between cities and that the characteristic correlation length displays an acute increasing trend in
the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like
analysis, where clustering of cities and a phase-transition–like behavior describing the size of the
largest cluster as a function of a homicide threshold are observed. This transition-like behavior
presents evolutive features characterized by an increasing in the homicide threshold (where the
transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the
cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities
at large scales, which may contribute for better political decisions and resources allocation as well
as opens new possibilities for modeling criminal activities by setting up fundamental empirical
patterns at large scales.

Copyright c© EPLA, 2015

Introduction. – The study of the social phenomena
is now ubiquitous in the physicist’s research agenda. In
particular, methods based on statistical physics have been
proven very powerful when applied to social systems [1–4].
An important example is related to the empirical in-
vestigations and modeling of criminal activities [5–12],
which have been recently reviewed by D’Orsogna and
Perc [13]. On a local scale (city level), a well-known
pattern is related to the so-called “broken windows the-
ory”. Proposed by Wilson and Kelling [14] in 1982
and widely accepted among criminologist, this theory
can be summarized by the idea that degraded urban en-
vironments foster criminal activities in their neighbor-
hoods. Indeed, empirical findings suggest that criminals
tend to return to previously visited locations [15] and
the violation of social norms/rules causes the spread of
disorder [16]. These behaviors have been modeled by
reaction-diffusion equations [17–19] and self-exciting point
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processes [20–22]. Remarkably, statistical methods based
on such models have been actually employed for identify-
ing possible crime areas in several security administration
departments [13,16,23].

On larger scales, such as at a country level, much less
is known about the spatial dynamics of criminal activi-
ties. Questions on whether criminal activities in a given
city have influence in its neighboring cities or if criminal
activities also form spatial clusters of cities have not been
addressed yet. In this context, Brazil is (unfortunately) an
ideal place for addressing such questions: it is one of the
most violent countries in the world and it is also a country
with continental dimensions. Here we investigate the spa-
tial correlations and the clustering patterns of homicides
in all Brazilian cities; we further quantify how these two
aspects of the spatial dynamics of homicides have evolved
along the period of 1980 to 2011.

Our findings show that the spatial correlation function
in the per capita homicides decays exponentially with the
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distance between cities; we further observe that the char-
acteristic correlation length displays an acute increasing
trend in the latest years (≈ 14 km by year). These behav-
iors are not directly related with the spatial correlations in
the population size, which present power-law decays with
a quite stable exponent. We also investigate the forma-
tion of spatial clusters of cities as a function of a lower
bound for the per capita homicides. The results reveal
the emergence of spatial clusters and that the size of the
largest cluster depends on the employed threshold in a
non-trivial way. Similarly to what happens in phase tran-
sitions, the size of the largest cluster abruptly changes
around a specific value of the homicide threshold. This
transition-like behavior has also evolved: the homicide
threshold where the transitions occur has increased, while
the magnitude of the transitions (length of the jumps in
the cluster size) has decreased over the years. Thus, our
work supports the idea that the number of homicides of a
city affects the value of this urban metric in nearby cities
(tens of kilometers away) and that this correlated behav-
ior has intensified over the last few years. In the following,
we present our dataset, the analysis on the spatial correla-
tions, the clustering analysis and, finally, some concluding
remarks.

Data presentation. – We have accessed data of all
Brazilian cities in the period from 1980 to 2011 (31 years)
made freely available by the Department of Informatics
of the Brazilian Public Health System [24]. For each city
i in given year t, we have the number of homicides Hi(t),
the population size Ni(t) and the geographic location of
the city (latitude and longitude). Figure 1 illustrates our
dataset by showing the evolution of the per capita homi-
cides in Brazil h(t) = [

∑
Hi(t)]/[

∑
Ni(t)] and the spa-

tial distribution of the per capita homicides for each city,
hi(t) = Hi(t)/Ni(t), over the Brazilian territory. We note
that the per capita homicides in Brazil has more than dou-
bled during the period of 31 years covered by our data.
The maps of this figure also provide clues of spatial corre-
lations and clustering in the spatial distribution of hi(t);
specifically, we observe the emergence of areas (group of
cities) with large and small values of hi(t).

Results. – In order to start quantifying the spatial dy-
namics ruling hi(t), we evaluate the spacial correlation
function

Ch(r, t) =

〈
[hi(t) − μ(r, t)][hj(t) − μ(r, t)]

〉
rij=r

σ2(r, t)
, (1)

where hi(t) and hj(t) are the per capita homicides in the
cities i and j, μ(r, t) is the average and σ2(r, t) is the vari-
ance of the per capita homicides of cities separated by
r kilometers, and 〈. . . 〉rij=r stands for the average over
all pair of cities separated by r kilometers. We have ac-
tually considered intervals of r for evaluating Ch(r, t) be-
cause of the natural discretization of our data. Figure 2(a)
shows the spatial dependence of the correlation function
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Fig. 1: (Color online) Time evolution of the per capita
homicides in Brazil and its spatial distribution among the
Brazilian cities. The plot shows the evolution of the over-
all per capita homicides h(t) in Brazil during the period
from 1980 to 2011 and the three maps illustrate the spa-
tial distribution of hi(t) over the Brazilian territory in the
years 1980, 1995 and 2011. For the maps, each point rep-
resents a city and the color code stands for the value
of hi(t), the size of the point is also proportional to
hi(t).

Ch(r, t) for the year t = 2005 on mono-log scale. We
observe that Ch(r, t) is well approximated by an expo-
nential decay spanning hundred of kilometers, that is,
Ch(r, t) ∼ exp [−r/rc(t)], where rc(t) is the characteris-
tic correlation length in year t. Similar exponential de-
cays are observed for all years in our dataset. However,
the value of rc(t) changes from year to year as depicted
in fig. 2(b). Between 1980 and 2003, rc(t) shows an ap-
proximately linear decreasing tendency of 1.8 km per year,
followed by an acute linear increasing trend of 14 km per
year in the period from 2003 to 2011. Our results thus in-
dicate that value of the per capita homicides in a city has
influence in its nearby cities through short-range correla-
tions. However, it is worth noting that the values of rc(t)
are comparable with the typical distances among Brazilian
cities (average value of ∼ 1000 km); furthermore, the re-
markable increasing trend of rc(t) over the past few years
suggests that the influence/correlation that cities exert on
each other has intensified. It is very hard to point out
the concrete origins for explaining this sharp variation in
the values of rc(t) and, perhaps, the investigation of other
urban indicators could help clarify this behavior. Homi-
cides cases are actually correlated with several other urban
indicators [10,12] including economic indicators such as in-
come. These indicators also have gone through a period
of quick variation over the last few years, which may have
contributed to the changes in spatial dynamics of hi(t).

In addition to being correlated with other urban in-
dicators, the evolutive features of Ch(r, t) could also be
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Fig. 2: (Color online) Spatial correlations in the per capita homicides and in the population size. (a) Spatial dependence of
correlation function Ch(r, t) evaluated for the per capita homicides hi(t) in year t = 2005. The red dots are the empirical values
of Ch(r, t) and the dashed line is an exponential fit (via the ordinary least square method) to these data on mono-log scale.
The value of the characteristic correlation length rc(t) and its 95% bootstrap confidence bounds are shown in the plot. (b) The
red line shows the evolution of rc(t) along the years in our dataset. The shaded areas are 95% bootstrap confidence intervals
for rc(t) and the two line segments are linear fits to values rc(t) vs. t in the periods from 1980 to 2003 and 2003 to 2011
(the linear coefficients and their confidence bounds are shown in the plot). (c) Spatial dependence of the correlation function
Cp(r, t) evaluated for the population size Ni(t) in year t = 2005. The blue dots are the empirical values and the dashed line
is a power-law fit to these data on log-log scale (the power-law exponent α is shown in the plot). (d) The blue line illustrates
the approximately constant behavior of α(t) over the years (the shaded areas stand for 95% bootstrap confidence intervals),
characterized by an average value of 1.10.

related to the spatial dynamics of the population size
Ni(t) due to the definition of hi(t). To investigate this
hypothesis, we evaluate the correlation function Cp(r, t)
considering the population size Ni(t) in place of hi(t) in
eq. (1). Figure 2(c) shows that the spatial correlation for
the population size is well described by a power-law decay,
Cp(r, t) ∼ r−α(t), with an exponent α(t) = 1.14 in the year
t = 2005. Analogous behaviors are obtained for all other
years with practically the same power-law exponents. In
fact, as shown in fig. 2(d), the behavior of α(t) vs. t is well
approximated by its overall average value (α(t) ≈ 1.10).
Similar results were reported for the correlations in the
population size of the United States cities [25]. Thus, the
evolution of Ch(r, t) for the per capita homicides cannot
be directly explained by the spatial dynamics of the pop-
ulation size.

Another interesting aspect of the exponential correla-
tion in hi(t) is that it can be considered non-trivial in
the context of the Edwards-Wilkinson equation [26]. This
equation is usually employed for describing the stochastic
kinetics of surfaces in the presence of diffusion and envi-
ronmental randomness. In the continuum limit, we can
write the Edwards-Wilkinson equation for the per capita
homicides as

∂

∂t
h(r, t) = D∇2h(r, t) + η(r, t), (2)

where h(r, t) represents per capita homicides in a point
localized by the vector r, D is the diffusion coefficient,
∇2 is the Laplacian, and η(r, t) is an uncorrelated (in space
and time) noise: 〈η(r, t)η(r′, t′)〉 ∝ δ(r − r′)δ(t − t′). For
this model, the correlation is usually obtained by taking
Fourier transforms in space and time, evaluating the cor-
relation in this double-transformed Fourier space and re-
turning to the usual space via inverse Fourier transforms
(see refs. [26–28] for more details). Following these proce-
dures, we can write the spatial correlation in d dimensions
and for large values of t as

Ch(r) ∼
{

r2−d, if d �= 2,

ln(1/r), if d = 2.
(3)

The previous result should be understood as a null model
for our data and, thus, we would expect a very slow de-
cay (a logarithm decay, since our system is essentially a
two-dimensional one) for the spatial correlation in hi(t)
assuming that the homicide dynamics is solely ruled by
diffusive aspects and environmental randomness. In fact,
an approximately logarithm decay for the spatial correla-
tion was observed in some social systems (turnout rates
in elections [29,30] and obesity [25]) and also for lightning
activity rates [31]. Naturally, the model of eq. (2) is quite
crude under the usual complexity involved in social sys-
tems; perhaps, the first ingredient to add to this model
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Fig. 3: (Color online) Formation of spatial cluster of cities and a percolation-like analysis. The plot shows the size of the largest
cluster S (defined as the number of cities that belong to the cluster) as a function of the threshold T in the per capita homicides.
The red line shows the results considering data from the year t = 1980 and the blue line shows the results after randomizing
the values of the per capita homicides hi(t) among the cities. For the original data (red line), we observe that S undergoes
an abrupt change around a specific value of T = T ∗(t), followed by smaller subsequents abrupt changes. The inset shows a
magnification of the region where this transition-like behavior occurs. The value of T ∗(t) is defined as the point at which the
jump in S is maximum and we have further defined the transition magnitude M(t) as the size of this maximum jump (both
T ∗(t) and M(t) are illustrated in the plot). The three maps illustrate the clusters identified by the DBSCAN algorithm for the
values of T indicated by the green arrows.

is a reaction term (leading us to a reaction-diffusion–like
equation). Another important aspect of our system is the
discrete and non-homogeneous spatial distribution of the
cities, which may also play an important role on the spatial
correlations. However, despite the importance of model-
ing, we believe that this modeling question may deserve a
separated investigation.

The spatial correlations in hi(t) also provide an
indication of the existence of spatial clusters of cities with
similar values of per capita homicides. To address this
question, we study the formation of spatial cluster of cities
via a percolation-like analysis [25,32,33]. Specifically, we
define a homicide threshold T and select all cities for which
hi(t) ≥ T . For the set of cities satisfying this condition,
we apply the density-based spatial clustering of applica-
tions with noise algorithm (DBSCAN —as implemented
in Python library Scikit-Learn [34]) for identifying pos-
sible spatial clusters. This algorithm finds statistically
significant clusters and we have investigated the size of
the largest cluster S (that is, the number of cities in the
largest cluster) as a function of the threshold T , as shown
in fig. 3 (red line) for the year t = 1980. Analogously to
a phase transition, S undergoes an abrupt change around
a specific value of T = T ∗(t), where the largest cluster
starts to be broken into smaller ones. A similar behavior
was observed for obesity rates in the United States [25].
In our case, the value of T ∗(t) is defined as the point at
which the jump in S is maximum and we have further

defined the transition magnitude M(t) as the size of this
maximum jump. In this particular example, we have that
at T ∗(t = 1980) = 5.67× 10−5 the number of cities in the
largest cluster decreases by M(t = 1980) = 314. We fur-
ther observe the existence of smaller subsequents abrupt
changes in S, producing a staircase-like behavior in S. In
order to confirm that this transition-like behavior is not
only related to the spatial location of the cities, we ran-
domize the values of hi(t) among the cities and investigate
again the relationship between S and T . For the random-
ized data, fig. 3 (blue line) shows that the size of the largest
cluster continuously goes to zero as T increases. Thus, the
intricate behavior of S vs. T observed for the original data
cannot be directly related to the spatial distribution of the
Brazilian cities.

We have applied the clustering analysis for all years in
our dataset and a similar transition-like behavior is found
for all of them, but with some evolutive features. The
critical value T ∗(t) has increased over years with an ap-
proximately linear rate of (0.10 ± 0.01) × 10−4 per capita
homicides per year, as shown in fig. 4(a). Naturally, the
growth of T ∗(t) should be related to the overall increas-
ing trend in the per capita homicides of Brazil (fig. 1). In
order to account for this effect, we divide T ∗(t) by the
overall per capita homicides in Brazil h(t). Figure 4(b)
shows that part of the evolutive behavior of T ∗(t) is ac-
tually associated with h(t); however, a statistically signif-
icant increasing trend is still observed for scaled threshold
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Fig. 4: (Color online) Evolutive aspects of the transition-
like behavior. (a) Time evolution of the critical value T ∗(t)
where the size of the largest cluster S undergoes an abrupt
change (red dots). The dashed line is a linear fit to these data
and the linear coefficient as well as the confidence interval are
shown in the plot. (b) Evolution of scaled homicide threshold
T ∗(t)/h(t) (red dots). Again, we observe an increasing trend
that is approximated by a linear function (dashed line) whose
linear coefficient and the confidence interval are shown in plot.
(c) Changes in the transition magnitude M(t) over the years
(red dots). Despite the noisy relationship, a statistically signif-
icant decreasing trend is observed, which can be approximated
by a linear decay (dashed line) whose linear coefficient and
confidence interval are shown in the plot.

T ∗(t)/h(t). Even after scaling by h(t), the scaled homicide
threshold has almost tripled during the 31 years covered by
our data. This result somehow agrees with the increasing
in the characteristic correlation length rc(t), in the sense
that the more intense correlations of the recent years re-
quire larger thresholds T ∗(t) for breaking the spatial clus-
ters. To further quantify the evolutive aspects of these
transitions, we investigate whether the transition magni-
tude M(t) has evolved along the years. Despite being a
more noisy relationship, fig. 4(c) shows that M(t) has a
significant decreasing trend that can be approximated by
a linear decay of ≈5 cities per year. Again, we suspect that
part of this behavior is related to the increasing in rc(t).

Conclusions. – We have characterized the spatial dy-
namics of the homicide crimes in all Brazilian cities. Our
results have shown that the per capita homicides in a
city have influence in its nearby cities through short-range
correlations. By investigating the evolution of charac-
teristic correlation length, we verified that the influ-
ence/correlation among cities has considerably intensified
over the latest years. Due the existence of these correla-
tions, we have investigated the formation of spatial clus-
ter of cities via a percolation-like analysis. Statistically
significant clusters were observed and a phase-transition–
like behavior describing the size of the largest cluster as
a function of the homicide threshold was also described.

This transition-like behavior presents evolutive features
characterized by an increasing in the homicide threshold
where the transitions occur and by a decreasing in the
transition magnitudes (length of the jumps in the cluster
size). These two features seem to be related to the increas-
ing of the characteristic correlation length, since more in-
tense correlations require larger homicide thresholds for
breaking the spatial clusters and may also contribute for
the decreasing of the jumps in the cluster sizes. Thus,
our work sheds new light on the spatial patterns of crim-
inal activities at large scales and indicates that empirical
patterns observed in the context of the “broken windows
theory” at the city level (that is, the clustering of criminal
activities) seems to emerge in a much larger scale. We
further believe that our empirical findings open new pos-
sibilities for modeling criminal activities. Because of the
successful description (at the city level), models based on
reaction-diffusion equations and point processes together
with extensions of the Edwards-Wilkinson equation are
natural candidates to be tested for reproducing the pat-
terns observed at at larger scales.
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