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The availability of large datasets requires an improved view on statistical laws in complex systems, such
as Zipf’s law of word frequencies, the Gutenberg-Richter law of earthquake magnitudes, or scale-free
degree distribution in networks. In this Letter, we discuss how the statistical analysis of these laws are
affected by correlations present in the observations, the typical scenario for data from complex systems. We
first show how standard maximum-likelihood recipes lead to false rejections of statistical laws in the
presence of correlations. We then propose a conservative method (based on shuffling and undersampling
the data) to test statistical laws and find that accounting for correlations leads to smaller rejection rates and
larger confidence intervals on estimated parameters.

DOI: 10.1103/PhysRevLett.122.168301

Introduction.—Statistical regularities collected in the
form of “universal laws” play a central role in complex
systems [1–3]. Zipf’s law of word frequencies [4], the
Gutenberg-Richter law of earthquake magnitudes [5],
scale-free degree distributions in networks [6], and inter-
event time distributions between bursty events [7–10] are
prominent examples that triggered entire research lines
devoted to explaining the origin and to exploring the
consequences of these laws.
Recently, the empirical support of such laws has been

heavily questioned. The best known example is the case of
scale-free degree distribution of networks; after the seminal
work of Barabasi and Albert in 1999 [6], the early 2000s
were marked by findings of power law distributions in
various network datasets,while in the last five years the trend
has reversed and it is now common to read that networks
with power law degree distribution are rare [11,12] (see
Ref. [13] for a journalistic account). This recent shift in
conclusions, which appears in the analysis of Zipf’s law in
language [3,14,15] and also in other areas [16,17], is
partially due to new (larger) datasets but mostly due to
the improved statistical methods: least-squared fitting and
visual inspection of double-logarithmic plots (used since
Zipf) have been replaced by maximum likelihood methods
made popular in the influential article by Clauset, Shalizi,
and Newman [17], see Refs. [18–21] for variations. A point
often ignored in the interpretations of the recent findings is
that these methods rely on two hypotheses:
H1: The observations x are distributed as pðx; α⃗Þ, where α⃗
are parameters, e.g., for a power law

pðx; αÞ ¼ Cx−α: ð1Þ

H2: The empirical observations xi, i ¼ 1;…; N are inde-
pendent (e.g., of i or xi−1).

While the statistical laws correspond to H1, the statistical
tests rely also on H2 [implicitly assumed, e.g., when
the log-likelihood is computed as

P
N
i¼1 logpðxiÞ

[5,12,17,21,22] ]. Complex systems are characterized by
strong (temporal and spatial) interdependencies [23] and it
is thus not clear whether the recent claims [11,12,16] of
violation of the statistical laws arise from systematic
deviations of the law itself (H1) or, instead, whether they
are due to the well-known fact that observations are not
independent (H2).
In this Letter we show that dependencies in the data

(violation of H2) have a strong impact on the empirical
analysis of statistical laws, leading to rejections even in
processes that satisfy the law (H1), and to overconfident
selection of models and parameters. We then propose an
alternative method that distinguishes between H1 and H2,
yielding an upper bound on the degree of correlations for
which the statistical law is rejected.
General setting.—Let fxig ¼ x1; x2;…; xN be an

ordered sequence obtained from a measurement process
that asymptotically has a well-defined distribution pðxÞ ¼
ð#xi ¼ x=NÞ as N → ∞. In observations of dynamical
systems (or time series), xi will typically depend on the
observations at previous times so that for all times τ smaller
than some (relaxation) time τ� we find pðxijxi−τÞ ≠ pðxÞ.
Violations of H2 happen also when data is not measured as
a time series. In the case of Zipf’s law of word frequencies,
syntax restrict the valid sequences of word tokens, in
violation of H2 (both in the rank-frequency and frequency
distribution pictures [3,15]). In the case of networks, H2
can be violated because of the generative process or
because of the sampling employed to observe the nodes
and links (typically a subsample of an underlying network).
In fact, it has been shown that the degree distribution of
networks is sensitive to the sampling procedure [24–26].
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Moreover, the hypotheses H1 and H2 of the standard tests
for power law distribution do not build a proper probabi-
listic network model [27], are thus not suitable to a rigorous
statistical analysis [29], and the analysis of the degree
distribution of networks requires further assumptions about
the sampling or generative process.
More generally, strong correlations are ubiquitous in

complex systems [23] and it is hard to imagine a case for
which H2 holds. In Fig. 1 we show how previously
proposed statistical laws and correlations appear together
in paradigmatic complex systems: the Gutenberg-Richter
law for earthquakes (exponential [5]), interevent times of
words (stretched exponential [7–9]), Zipf’s law for word
frequencies (power law [4]), and scale-free distribution
for the node degree in networks (power law [6]). While
earthquake events and interevent times naturally occur as
time series data, we mapped word frequencies in texts and
the network data into ordered sequences fxig based on a
simple sampling process (see caption of Fig. 1) in order to
illustrate and quantify the violation of H2 in an unified
framework.
Constructed example.—We now show that the traditional

methods [17] lead to a rejection of a power law distribution
[Eq. (1)] even for data which are power law distributed for
N → ∞. This is done by building a Markov process [36,37]
in which H1 is satisfied but H2 is violated [i.e., xi depends
on xi−1 and pðxÞ ¼ Cxα for N → ∞, see the Supplemental
Material [30], Sec. III].
In Fig. 2 we show that the violations of H2 have a strong

influence on the analysis of statistical laws formulated
in H1. In particular, the application of the traditional

recipes [17] lead to the wrong conclusion that the data
are not compatible with a power law distribution: the
probability of rejecting the null hypothesis at a 5%
significance level is much larger than 5% even for small
sample sizes N [inset of Fig. 2(b)]. This corresponds to a
type-I error because, by construction, the data satisfy H1.
The origin of this failure thus originates from the fact that
correlations lead to an effective reduction of the number of
independent observations implying larger fluctuations
which lead to larger deviations from the fitted model.
Specifically, we recall that the test employed in Ref. [17]
consists of comparing the Kolmogorov-Smirnov (KS)
distance between the correlated data and the fitted curve,
KScorrelated (blue curve), and the KS distance between
independent samples of the model (H1þ H2) and the
fitted curve, KSmodel (orange curve). More precisely, the
statistical law is rejected at 5% significance level if
KScorrelated > KSmodel in 95% realizations (samplings) of
the model. While in our artificial data KScorrelated ∝ 1=

ffiffiffiffi
N

p
(as expected) and thus KScorrelated → 0 for N → ∞, this
convergence is shifted from the convergence of KSmodel
[Fig. 2(b)] due to the correlations. This shift leads to an
increased rejection rate (≈1, p value ≈0).
Violations of H2 are important not only in the hypoth-

esis-testing setting discussed above, they also lead to
increased systematic and statistical errors (bias and fluc-
tuations) in the fitting of the parameter α̂ [Fig. 2(c)] and,
thus, in the selection between models [38,39].
Real data.—In order to confirm that the results discussed

above are also relevant in real datasets—which have a fixed
size N—we consider two types of undersampling of data to

FIG. 1. Statistical laws and strong correlations occur simultaneously in complex systems. Main Panels: Distribution pðxÞ [or its
cumulative FðxÞ] of observable x for the data (blue dots) and maximum-likelihood fit of different statistical laws (orange, see
Supplemental Material [30], Sec. I). Insets: autocorrelation CðτÞ with time lag τ of the observable x for the original data (blue) and
randomized data (orange, average and 1 or 99 percentiles over 1000 realizations); τ� indicates the value at which the original and
randomized CðτÞ are statistically indistinguishable [31]. (a) Sequence of magnitudes x of earthquakes in Southern California from
1981–2010 [32] (N ¼ 59555 with commonly used threshold x ≥ 2 [33]). (b) Sequence of interevent times x (measured in words) of
consecutive occurrences of the word “the” in the book Moby Dick obtained from Project Gutenberg [34] (N ¼ 14042 with threshold
x ≥ 3). (c) Sequence of words (tokens) in the order they appear in the book Ulysses by James Joyce obtained from Project Gutenberg
[34]; x the rank of the word (type) in terms of frequency in the whole book (N ¼ 264971 word tokens, obtained removing punctuation
and nonalphabetic characters). (d) Sequence of degrees of nodes from a network; x is the rank of the degree of the node; the sequence
fxig used to compute CðτÞ was obtained applying an edge-sampling method to the complete network (see Supplemental Material [30],
Sec. II); the network corresponds to the connections between autonomous systems of the Internet [35], V ¼ 34761 vertices (nodes) and
E ¼ 107720 unique edges (in our case N is the number of half edges and thus N ¼ 2E).
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sizes n < N: taking n points either randomly or preserving
the structures or correlations by taking consecutive portions
of the time series (the network and word-frequency data-
bases are first mapped to a time series, as in Fig. 1). In order
to distinguish between the effect of the shape of the
distribution (H1) and correlations (H2) we compare the
distribution of the n points with (i) the proposed statistical
law and (ii) the empirical distribution (i.e., the one obtained
for n ¼ N). Our results (see the Supplemental Material
[30], Sec. IV) confirm that correlated data show higher
rejection rate and fluctuations of parameters.
Alternative approach.—In the vast literature of statistical

methods for dependent data, two general approaches can be
identified. The first approach is to incorporate the violation
of independence in more sophisticated (parametric) mod-
els, e.g., in a time series one could consider Gaussian
Markov processes [40]. This is of limited use in our case
because statistical laws aim to provide a coarse-grained
description (stylized facts) valid in many systems, instead
of different detailed models of particular cases. The second
(nonparametric) approach, which we pursue here, is to
decorrelate or decluster the data, leading to a dataset with
an “effective” sample size N� ≤ N [41–43]. In practice,
the analysis consists of multiple realizations of the
following three steps. (i) Randomize (shuffle) the original
sequence and select randomly n points, for different
n ∈ ½1; N�. (ii) Apply the traditional statistical analysis
(i.e., the hypothesis test, model comparison, and fitting
based on H1þ H2) to the randomized dataset obtained in
(i), investigating their dependence on n. (iii) Estimate the
correlation τ�, defined as the time after which two obser-
vations (in the time series) are independent from each other.
Out of the total N samples we thus estimate N� ¼ N=τ� to
be the number of independent samples and therefore we
select the results from step (ii) for n ≈ N�.

The determination of τ�—or the effective sample size
N�—in step (iii) requires knowledge or assumptions about
how the data were generated. For the case of temporal
sequences we propose to compute the autocorrelation
and take as τ� the lag for which it reaches an interval
around zero (1 percentile of the random realizations, as in
Fig. 1). In the constructed example (Fig. 2), we obtain
τ� ¼ 407 ⇒ N� ¼ 245, which leads to a rejection rate (at p
value ¼ 0.05) equal to 5% for all n < N�. For the case of
networks, the determination of the effective sample size N�
depends on the generative process and/or the sampling used
to measure the data (here we assumed a specific edge
sampling method, as described in Fig. 1.) In Fig. 3, we
show evidence of the effectiveness of our approach through
a systematic analysis of the p value distribution as a
function of n for both the constructed and empirical
datasets. This is further corroborated in artificial data
(see the Supplemental Material [30], Sec. V) showing that
(i) our method for the selection of τ� is superior to the one
proposed in Ref. [41] (sum of the autocorrelation function)
and (ii) can be equally applied to data with other types of
correlation: a Markov process with negative correlation and
a Gaussian process with long-range correlations. In all
cases our approach shows an uniform distribution of p
values under the null hypothesis.
An important message of our analysis is that conclusions

about the statistical law can be obtained even when the
precise value of τ� (or the effective sample size N�) is
unknown in step (iii). By shuffling and undersampling the
sequence at different sizes n—steps (i) and (ii)—we can
investigate how the results depend on n and obtain the
range in τ� for which the different conclusions hold. For
instance, in the case of earthquakes [Fig. 3(c)] we see that
the rejection increases dramatically around n ≈ 103. We
thus conclude that, in this dataset of size N ≈ 105, we

FIG. 2. Correlations impact the fitting of power law distributions using Maximum Likelihood methods. Two synthetic datasets
following a power law with exponent α ¼ 1.5 for x ¼ 1;…; 1000 were generated: one using independent sampling (in orange or light
gray) and one with correlations (in blue or dark gray); see the Supplemental Material [30], Sec. II, for different choices of the maximum
cutoff leading to similar results. (a) Distribution pðxÞ for a single realization with N ¼ 105. Inset: Autocorrelation function CðτÞ.
(b) Average and 95% confidence interval of the KS distance over 100 different realizations of the synthetic data. Inset: Rejection rate,
i.e., fraction of realizations for which the power law is rejected on a 0.05-significance level according to method of Ref. [17] (dotted line)
for datasets of varying length N. (c) Average and 95% confidence interval of the estimated power law exponent α̂ over 100 different
realizations of the synthetic data.
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falsify the Gutenberg-Richter law if τ� ≤ N=n ≈ 102 obser-
vations ≈20 days [44]). The conservative estimate of τ� in
Fig. 1 was τ� ¼ 791 > 102 and therefore we conclude that
based on this data we cannot reject the Gutenberg-Richter
law, contrary to the conclusion obtained assuming inde-
pendent observations. We find similar results [Fig. 3(d)] for
the stretched exponential distribution of inter-event times
between words, while for Zipf’s law [Fig. 3(c)] the outcome
is uncertain, and the power law degree distributions in
networks [Fig. 3(d)] is rejected even in the correlated case.
Discussion and Conclusion.—Statistical laws in complex

systems are typically formulated (as in H1) without refer-
ence to the generative process of the data. Therefore,
ideally, the empirical test of these laws should be designed
to account for a large class of processes generating fxig.
Traditional methods [17] based on the hypothesis of
independent data (H2) are weak tests because they include
a strong hypothesis that is easily violated, therefore favoring
rejection. In fact, here we have shown how these methods
(i) lead to wrong rejections of the laws because of correlated
data, and (ii) are over-optimistic regarding uncertainties of
the estimated parameters. Stronger tests of statistical laws
should make weaker assumptions about the generative
process so that rejections of the compound hypothesis
provide much stronger evidence of the rejection of the
law (H1). Here we proposed a methodology which allows
us to identify the strongest assumption about correlations of
the data τ� for which the law can be rejected. Being
conservative in the choice of τ� (i.e., choosing large values
for which we are confident that xi and xiþτ� are uncorre-
lated) overcomes the main shortcoming of the traditional
approach [17] and ensures that when we reject the law this is
not happening due to correlations in the data (failing to

reject the law is never a confirmation of its validity). In this
sense, our approach is similar in spirit to the Bonferroni
correction to account for multiple hypothesis testing [45]
(both aim to avoid overconfident or spurious rejections of
hypotheses). Our approach is even applicable in cases with
no well-defined mixing time τ� (e.g., long-range correla-
tions) because it yields very large values of τ� ≈ N (no two
points are independent).
Instead of directly testing whether the statistical law

is valid (hypothesis testing), often the best we can do is to
compare different alternatives (model comparison)
[3,11,14,17,22,38,39]. Also in this case, violations of the
hypothesis of independence are important and have been
mostly ignored in the analysis of statistical laws in complex
systems (see Refs. [5,12,25] for exceptions). As shown
above, due to correlations (and violations of H2) actual data
show much larger fluctuations than expected under the
hypothesis of independent observations. By using a shuffled
and undersampled dataset, we obtain larger uncertainties in
the estimated parameters; we expect similar lack of certainty
in the choice of best models. The need to account for
violations of the independence assumption, shown in this
Letter, applies much more broadly than the cases treated
above. Correlations should be accounted for whenever
testing statistical laws in complex systems, such as linguistic
laws [3], scaling laws with system size—maximum like-
lihoodmethods based onH2 have been applied to biological
allometric laws [46] and to city data [47]—and different
distributions of interevent time (burstiness) [7–10].
The code and data shown in this Letter can be obtained

by following the link in Ref. [48].

We thank F. Font-Clos and J. Moore for the careful
reading of the manuscript.

FIG. 3. Decorrelating data leads to different conclusions in hypothesis testing in artificial (a) and (b) and empirical (c)–(f) data. The
distribution of p values from fitting correlated (of size N, in blue) and subsampled shuffled data (of size n ≤ N, in orange). While the
correlated data leads to a peaked distribution of small p values (i.e., rejection), the decorrelated data obtained from our approach leads to
the expected flat distribution of p values. The effective sample size N� (black vertical line) was obtained from τ� reported in Fig. 1 as
N� ¼ N=τ�. While all cases are rejected when fitting the full dataset, in three out of four cases we cannot reject the null hypothesis for
decorrelated data (median p value ≥ 0.05 at n ¼ N�).
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